

Department of Economics Working Paper WP 2010-09 June 2010

Demand Shocks, Capacity Coordination and Industry Performance: Lessons from Economic Laboratory

Kyle Hampton University of Alaska Anchorage

Katerina Sherstyuk University of Hawaii at Manoa

UAA DEPARTMENT OF ECONOMICS 3211 Providence Drive Rasmuson Hall 302 Anchorage, AK 99508

http://econpapers.uaa.alaska.edu

Demand Shocks, Capacity Coordination and Industry Performance: Lessons from Economic Laboratory

Kyle Hampton * and Katerina Sherstyuk^{†‡}

Abstract

Antitrust exemptions granted to businesses under extenuating circumstances are often justified by the argument that they benefit the public by helping producers adjust to otherwise difficult economic circumstances. Such exemptions may allow firms to coordinate their capacities, as was the case of post-September 11, 2001 antitrust immunity granted to Aloha and Hawaiian Airlines. We conduct economic laboratory experiments to determine the effects of explicit capacity coordination on oligopoly firms' abilities to adjust to negative demand shocks and on industry prices. The results suggest that capacity coordination speeds the adjustment process, but also has a clear pro-collusive effect on firm behavior.

^{*}Department of Economics, University of Alaska Anchorage. Email: afkh2@uaa.alaska.edu

[†]Corresponding author. Department of Economics, University of Hawaii at Manoa. Email: katyas@hawaii.edu

[‡]We would like to thank James Mak for many motivating discussions and useful feedback, and Roger Blair, Tim Cason, Tim Halliday, Rene Kamita, Andreas Leibbrandt, Charles Plott, Bart Wilson, participants of the Economic Science Association meetings and Western Economic Association International meetings, and seminar participants at the University of Alaska - Anchorage, University of Hawaii at Manoa and Florida State University for their valuable comments.

1 Introduction

It is not unusual for firms in distressed industries to seek government assistance. In industries experiencing a sharp and sudden decrease in demand, firms may request help in coordinating a capacity reduction. In the years following World War II, many of Japan's large industrial firms faced the task of reducing their wartime capacity and encountered the difficult strategic situation of making unilateral reductions. This prompted the creation of an industrial policy to facilitate the structured and balanced reduction of capacity across all firms in the industry (Peck et al. 1987). In Europe, competition law may allow firms in a distressed industry to form "crisis cartels," or agreements to systematically restrict output or reduce capacity in response to a crisis in the industry. Indeed, crisis cartels were formed in the European synthetic fiber industry in the 1980's and in the Dutch brick industry in the 1990's. In each case, the agreements provided for specific capacity reductions by individual producers in response to structural excess capacities in the corresponding industries (Fiebig, 1999; Simpson, 2004). A similar attempt to balance capacity reduction in the face of decreased demand took place recently in the United States. In 2002, the U.S. Department of Transportation granted antitrust immunity to Aloha and Hawaiian Airlines in order to facilitate a bilateral reduction in inter-island flight capacity in Hawaii after a reduction in demand following the September 11, 2001 terrorist attacks. Beyond merely permitting the two companies to coordinate their capacity reduction, the immunity agreement created a mechanism for revenue transfers designed to punish either company if they deviated from the agreed-upon capacity reduction.¹

In this study, we use economic experiments to examine the effects of capacity coordination on industry performance in response to a negative demand shock. One could argue that explicit coordination by firms is critical in the face of a challenging reduction in demand. But such coordination may also encourage anti-competitive behavior by the participating firms. Proponents of the Aloha-Hawaiian antitrust immunity agreement argued that it was impossible for the two airlines to unilaterally reduce their capacity enough to avoid bankruptcy in reaction to a post-9/11 reduction in air travel (Aloha Airlines and Hawaiian Airlines, 2002).² The U.S. Department of Justice, in opposing the anti-trust exemption, claimed that the agreement would undermine consumer welfare by allowing the airlines market power sufficient to reduce service and raise prices well above the competitive level. Inter-island airfares did rise dramatically following the inception of the agree-

¹An earlier case of coordinated capacity reduction in the U.S. airline industry took place in 1971, when the Civil Aeronautics Board approved a capacity limitations agreement among three airline carriers (Eads, 1974). In other historical circumstances producers were granted government permission to coordinate a variety strategic economic variables, as was the case under the National Industrial Recovery Act of 1933 (e.g., Alexander, 1994). Recently, newspaper companies in the U.S. have discussed the need for an anti-trust exemption that would allow them to jointly set prices for their Web content (Los Angeles Times, February 4, 2009.)

²Aloha Airlines declared bankruptcy and went out of business in Spring 2008 despite the immunity agreement. Arguably, however, the primary reason for Aloha's going out of business was entry by a competitor airline go!, not the 2001 demand shock.

ment in 2002 (Blair et al., 2007; Kamita, 2010).³ Yet, it is difficult to conclude, based on mere field data analysis, whether these price increases were necessarily due to the capacity coordination. Further, it is difficult to determine whether or not explicit coordination was necessary for the firms to reduce their capacity in the face of decreased demand. Experimental methods have the advantage of permitting researchers to isolate effects of specific institutional features (Plott, 1989). Economic experiments have proven increasingly useful both in detecting anti-competitive effects of various industry practices (Grether and Plott, 1984; Offerman and Potters, 2006; Deck and Wilson, 2008), and in evaluating techniques used by antitrust authorities to hinder collusion (Apesteguia et al., 2007; Hinloopen and Soetevent, 2008).

There are theoretical and empirical arguments in the literature both for and against antitrust authorities allowing explicit capacity coordination. Capacity coordination in response to an unexpected negative demand shock in the airline industry may be justified by its cost structure, which includes large sunk costs (e.g., the cost of acquiring an aircraft) and large costs that can be avoided by not flying the aircraft but become fixed once the flight is scheduled (e.g., the cost for fuel and crew). As the scheduling of flights takes place before the seats are booked, the airlines run the risk of not covering their total costs unless they can predict the demand accurately and are able to set prices at levels above their marginal costs. This accounts for the necessity of above-marginal-cost pricing by firms in industries with large sunk and avoidable costs (Sjostrom, 1989; Durham et al, 2004; see also Van Boening and Wilcox, 1996). Kreps and Sheinkman (1983) develop a two-stage oligopoly model where firms first set their capacities, and then engage in price competition. They demonstrate that in this setting, Cournot-level above-marginal-cost pricing will emerge even without explicit capacity coordination, provided that the firms observe each other's capacity choices prior to setting their prices. This model appears appropriate for the airline industry, where capacities (flight schedules) are set before tickets are sold and companies may observe each other's capacities though publicly announced flight schedules. However, firms' knowledge of demand is an essential assumption in the Kreps and Scheinkman model. An unanticipated demand shock may lead to over-investment in capacity and losses either from unsold seats, or from marginal cost pricing.⁴ Further, it may be unrealistic to expect firms to adjust to new demand conditions instantaneously. If explicit capacity coordination allows firms to adjust to these new conditions faster, then it may help the firms avoid losses and stay in business. This could yield an argument for the antitrust exemption, provided that welfare gains from doing so outweigh potential costs to consumers.

 $^{^{3}}$ Kamita (2010) reports not only that prices rose during the period of coordination, but that they remained high until the entry of a new competitor, two and a half years after the antitrust immunity expired.

⁴If the demand shock is unanticipated, then capacities set before the shock become exogenous. Depending on the level of capacity set, the subsequent Bertrand price competition may result in either marginal cost pricing, or in price instability due non-existence of pure strategy equilibrium in prices (Osborne and Pitchik, 1986; see also Kruse et al., 1994).

The argument against explicit capacity coordination is backed by a large theoretical, empirical and experimental literature on collusion in oligopoly. Both game-theoretical (Tirole, 1988) and experimental research (Fouraker and Siegel, 1963; Dufwenberg and Gneezy, 2000; Huck et al., 2004) indicates that industries with a small number of firms with symmetric cost structures, who interact repeatedly under known and stable demand conditions,⁵ are prone to tacit collusion in the form of above-competitive pricing. Empirical evidence of collusion in oligopolies, especially duopolies, is also quite rich (Rees, 1993; Levenstein and Suslow, 2006). Though it is plausible that duopolists in an industry with stable demand could achieve above-competitive pricing, an unexpected negative demand shock would constitute a major challenge (Levenstein and Suslow, 2006; Staiger and Wolak, 1992).⁶ An antitrust immunity agreement that allows firms to explicitly coordinate and enforce capacity reductions could help firms establish or re-establish collusive pricing in a new environment and in this way have a detrimental effect on consumer welfare.

There are several cases detailed in the literature in which government authorities have unintentionally helped firms to collude (Albaek et al., 1997); and other cases in which explicit coordination helped firms to avoid bankruptcy (Sjostrom, 1989). In this view, consideration of the effect of capacity coordination on competition and overall outcomes in an industry experiencing an unexpected demand shocks is of particular interest.

In this article we report on an economic laboratory experiment that was conducted to evaluate effects of capacity coordination on oligopolistic industry performance. We recreate the Kreps and Sheinkman (1983) two-stage capacity and price setting duopoly game in the economic laboratory, but with repeated play in order to model firms who interact with each other for a long time under known and stable demand conditions. This allows us to establish, as a baseline, whether firms are likely to engage in above-marginal-cost pricing even without explicit coordination. We then institute a negative demand shock halfway through each experimental session, in order to investigate its effect on firm behavior. By then varying regulatory regimes after the demand shock (allowing or not allowing capacity coordination, and enforcing or not enforcing the agreed-upon capacity restrictions), we further consider how different capacity coordination regimes affect post-shock industry outcomes. This method allows us to evaluate whether capacity coordination agreements

⁵Blair et al. (2007) report that at the time of September 11th attacks, Hawaii's inter-island airline industry was largely dominated by two main providers, Aloha and Hawaiian airlines. These two providers had symmetric cost structures, close to equal market shares, provided homogeneous product and had been operating in this industry for a long time, with only occasional and largely unsuccessful entry. See also Kamita (2010).

⁶Reviewing the empirical literature on collusion, Levenstein and Suslow (2006) write: "Cartels break down occasionally because of cheating and lack of effective monitoring, but the biggest challenge cartels face are entry and adjustment of collusive agreement in response to changing economic conditions. Cartels that develop organizational structures that allow them the flexibility to respond to changing economic conditions are more likely to survive" (p. 43). Even though Levenstein and Suslow focus their analysis on the "hard-core" cartels, their arguments fully apply to tacit collusion where collusive outcomes may be supported by a repeated game-theoretic argument. Theoretical models, such as Staiger and Wolak (1992), also predict that periods of low demand would lead, through the emergence of excess capacity, to a breakdown of collusive pricing.

are likely to facilitate capacity reduction and to what extent these agreements are anti-competitive.

Davis (1999) and Muren (2000) study experimental triopoly markets in repeated settings in the framework of the Kreps and Sheinkman (1983) two-stage capacity and price setting game. Davis finds that capacity pre-setting raises prices and reduces capacity, though with substantial variation across markets. Muren reports that capacity choices for inexperienced subjects are higher (more competitive) than the Kreps and Sheinkman (1983) model predicts. Goodwin and Mestelman (2010) also report that inexperienced subjects over-invest in capacities in the Kreps and Sheinkman duopolies, but that capacities converge to the Cournot prediction as subject gain experience. However, these papers do not consider demand changes, which is the main focus of our study. Other experimental studies analyze the ability of market institutions to adjust to supply and demand shifts (e.g., Williams and Smith, 1984; Davis et al., 1993). Still others consider the effects of certain industrial practices or government programs on market outcomes (e.g., Grether and Plott, 1984; Hinloopen and Soetevent, 2008), but under stable economic conditions. Many experiments investigate collusion in a variety of market settings, but only a few (e.g., Brown et. al., 2009) explore the robustness of established collusive practices under changing conditions. The unique contribution of this article is two-fold. First, we study the effect of a negative demand shock on firms' abilities to sustain above-marginal-cost pricing in the Kreps and Sheinkman (1983) two-stage capacity and price competition framework. This setting is arguably more complex than simple quantity- or price- oligopoly competition; therefore it may be more challenging for firms to adjust to changes in demand. Second, we focus on the effects of regulatory measures that may be instituted in response to sudden negative changes in economic conditions. Our experimental evidence adds to and complements the scarce empirical literature (e.g., Kamita 2010) on the effect of capacity coordination on firms' abilities to both adjust capacities and engage in tacit collusion.

Our key experimental findings are as follows. First, we observed that explicit capacity coordination helped firms quickly adjust their capacities when demand conditions changed. Yet, most firms reduced capacities immediately after the demand shock even in the markets where no explicit coordination was allowed. The demand shock did not result in persistent losses and firm bankruptcies in any of the markets.⁷ Further, we obtained strong evidence that in many experimental markets, capacity coordination had a pronounced pro-collusive effect on firm behavior. Whereas prices fell and remained low after the demand shock in markets without capacity coordination, prices quickly recovered and even increased in markets with coordination. This is quite remarkable because, in our experiment, sellers coordinated capacities in settings more restrictive than real-world capacity negotiations. Negotiations in our experiment were computer-mediated, and were restricted to alternating capacity proposals, with the additional ability, in some treatments, to engage in mod-

⁷In fact, the only market where the sellers experienced on-going losses and went bankrupt was in the treatment allowing for coordination (NegPun); see table 1. These losses were most likely attributable to seller lack of understanding of the market, rather than the demand shock, as the losses persisted from early before-shock periods.

erated online chats.⁸ Finally, we observed that whereas the ability to coordinate capacity levels had a significant effect on reducing capacities and increasing prices immediately after the negotiations started, agreement enforcement and supplementary free-style communication became more important in sustaining the agreements in later periods.

The rest of the article is organized as follows. Research objectives, design and procedures are given in Section 2. Section 3 presents the results, and Section 4 concludes.

2 Research objectives and experimental design

The experiment is designed to explore the effects of capacity coordination in an oligopoly industry experiencing a sudden negative demand shock. Specific research objectives are the following. First, we explore firms' abilities to avoid excess capacities and achieve and sustain above-marginal-cost pricing without explicit coordination in a repeated two-stage capacity-price-setting duopoly.⁹ Second, we study the effects of a negative demand shock on industry outcomes in this environment, and on producers' abilities to adjust to the new demand conditions without explicit coordination. Third, we examine the ability of several capacity coordination institutions to help producers adjust to a negative demand shock. We compare the speed and the extent of capacity reduction under each institution, and the effects of the institutions on firm profits as a proxy for producer welfare. Finally, we investigate whether capacity coordination has a pro-collusive effect on firm behavior, leading to higher industry prices.

Experimental Design The basic design mirrors the Kreps and Sheinkman (1983; hereafter KS 1983) two-stage capacity-price duopoly model, except, similar to many market experiments, we add a repeated setting as this is more appropriate in modeling many real-world oligopolies. Each market is conducted as a series of trading periods in which two subjects in the roles of sellers compete to sell units of a fictitious good to a simulated buyer with a known linear demand. In line with KS (1983), the institution is a modified posted offer market, where subjects specify production and observe the production level of their counterpart prior to setting a price in each period. The capacity setting is simultaneous and - in the first part of each experimental session - is undertaken without communication between the sellers. Sellers incur costs on each unit of capacity produced regardless of how many units they actually sell. The capacities set by each seller are then revealed to the other seller in the market, after which the sellers simultaneously and privately specify an

⁸In reality, capacity coordination between firms may take place under more pro-collusive conditions. The 2002 Aloha-Hawaiian anti-trust exemption allowed representatives of both airlines to meet every 30 days to agree on flight capacities for the next month. The meetings took place behind closed doors, with apparently no direct oversight from the Attorney General's office. Experimental research shows that face-to-face communication has a strong positive effect on cooperation (e.g., Crawford, 1998).

⁹In this part, the study complements Davis (1999) by considering a setting where capacity is a continuous choice variable. Davis studies experimental triopolies where each seller had a maximum of six units of capacity.

asking price for the goods they have produced. After that, the simulated buyer purchases units from the sellers, buying from the lower price seller first.¹⁰ At the end of each trading period, sales and the corresponding profits or losses are reported to the sellers along with the posted price and sales of the other seller.

Parameters Each seller faces a constant marginal cost of 10 experimental dollars per unit and no fixed costs. We abstract from a more realistic setting of large fixed costs and non-constant marginal cost to focus on the issue of capacity coordination and its effect on the prices in a relatively simple environment. Each seller makes their capacity and pricing decisions in light of a known continuous linear demand function, which was set to be Q = 304 - 4(p) for the first 21 trading periods.

In the 22nd period, a demand shock is induced by a decrease in the intercept of the demand function. The post-shock demand that persists for the remainder of the session is then Q = 256 - 4(p).

This decrease in demand occurs in the course of a period (referred to as the "shock period") after the capacity setting stage has elapsed. Subjects are made aware of the change at that time and post their price in light of the new demand information. Subjects are warned during the instructions that a change in the demand is possible.

These supply and demand conditions imply a market price and quantity combination associated with each of three plausible theoretical benchmarks: Competitive Equilibrium (CE, which would imply marginal cost pricing and outcomes identical to Bertrand competition); Cournot outcome (as predicted by KS, 1983), and Monopoly outcome (which may be supported by repeated play and possibly enhanced by explicit capacity coordination). These theoretical benchmarks are displayed in the top three rows of Tables 2 and 3. The demand parameters are chosen so that the pre-shock Cournot price (\$32 experimental) is below the post-shock monopoly price (\$37 experimental), allowing for the replication of the post-shock price increase observed after the inception of the anti-trust exemption agreement between Aloha and Hawaiian airlines.

Treatments The before-shock trading periods are conducted identically under all treatments, with no capacity coordination. The demand shock is then instituted in period 22, followed by three transition periods (periods 22-24, which we call the "shock periods") with no coordination. This short span of shock periods allows us to assess whether the subjects attempt to unilaterally adjust to the new demand conditions immediately after the shock, before any coordination takes place. Starting from period 25, we vary capacity coordination and enforcement institutions across sessions, giving rise to four distinct treatments:

 $^{^{10}}$ Given the capacities and prices, the sales are determined exactly as specified in the KS (1983) model. See Experimental Instructions, included in Appendix A.

TREATMENT "NO NEGOTIATIONS, NO PUNISHMENT" (NONEGNOPUN). In this baseline treatment, the demand shock is followed by 14-16 additional periods under the new demand conditions with no explicit capacity coordination. The institution is the same as in the pre-shock periods.

TREATMENT "NEGOTIATIONS, PUNISHMENT" (NEGPUN) is modeled after the 2002 Hawaiian - Aloha airlines anti-trust exemption. Following the three shock periods, the capacity coordination mechanism is imposed and persists for the remainder of the session. In an additional stage at the beginning of each period, sellers negotiate and agree upon a capacity prior to setting it. In the event that either seller chooses to produce more than the agreed amount that period, the offender is penalized seven experimental dollars per unit produced over the agreed capacity, an amount chosen to exceed any potential gains that might accrue to the seller who broke the agreed upon amount, the penalty is transferred to the other seller. In the event that both exceed the agreed upon amount, the penalty is accrued to each with the net balance determined by the relative size of the divergence of each seller. This setting is designed to mimic the actual revenue transfer clause of the Aloha-Hawaiian airlines agreement.¹¹

The negotiation stage takes the form of a real-time bargaining session. Each seller can propose a per seller capacity. During this negotiation stage, a seller can change their proposal at any time as many times as they wish. Each seller, seeing the current proposal of the other seller, can choose to propose a different capacity, accept the proposal of the other seller, or do nothing at all. Upon either seller accepting the proposal of another, the negotiations end immediately and the sellers proceed to the next, capacity-setting, stage. If no proposal is accepted in the time allotted for negotiations (120 seconds), there is no agreement in place for that period.

TREATMENT "NEGOTIATIONS, NO PUNISHMENT" (NEGNOPUN) is identical to the NegPun treatment described above, except that there is no penalty for breaking the capacity agreement. This treatment is designed to isolate the effects of the enforcement (in the form of the revenue transfer clause) on the effectiveness of the agreement.

TREATMENT "NEGOTIATIONS, NO PUNISHMENT, CHAT" (NEGCHAT) replicates the Neg-NoPun treatment but allows, in parallel with structured negotiations, free form communication between the subjects in a chat window. This treatment is motivated by a large body of existing literature on non-binding communication in experimental markets and games (e.g., Holt, 1995; Crawford, 1998). It aims to investigate whether free-style non-binding communication could lead to better coordination than the structured negotiations alone, and whether it may substitute for an explicit punishment clause in promoting and maintaining capacity reductions. Chats are monitored

¹¹In setting the penalty level, we assumed that explicit capacity coordination may lead to the perfectly collusive monopoly outcome. Using the best response analysis, we then calculated the highest gain from deviation that a firm could obtain assuming the other firm sticks to the agreement. We then set the penalty per each unit of capacity excess at about 60% of possible per unit gain from deviation. Blair et al (2007) report that the revenue transfer clause of the actual Aloha-Hawaiian agreement set the penalty at the level corresponding to around 60-100% of extra revenue that a deviating party could obtain from each unit exceeding the agreed capacity level.

and subjects are warned not to discuss price in their chats, with the threat of removal from the experiment if they do not comply.

Procedures 41 two-person markets were conducted over the course of 13 experimental sessions, with eight sessions conducted at the University of Hawaii at Manoa (UHM hereafter) and five sessions conducted at the University of Alaska Anchorage (UAA hereafter). Table 1 provides a summary of the experimental sessions.

TABLE 1 AROUND HERE

Each session began with an oral reading of the instructions and the completion of a quiz confirming the subjects' understanding of the instructions; see Appendix A.¹² The experiment was computerized using the z-tree software (Fischbacher 2007). Subjects were seated at visually isolated computer terminals with communication limited to the experiment interface. Each market consisted of between 35 and 39 periods with the number of periods unknown to the subject beforehand. All markets were conducted with the subjects' full and common information of the demand and cost conditions. Demand conditions were presented to the subjects in tabular form and in the form of an on-screen calculator. The calculator allowed the subjects to evaluate their own and the other seller's earnings for each capacity and price combination before making the actual capacity and price choices; see Appendix B for a screen shot of subject decision screen with built-in calculator. Session length ranged between 2 and 3 hours.

Subjects were selected from the general undergraduate population at the two universities. No subject participated in more than one experimental session. Subjects received \$5 for showing up on time and were provided an initial budget of \$5 to offset any losses incurred early in the session. Subjects were also given a small per period endowment of 50 experimental dollars in each trading period. Conversion rate was 1750 experimental dollars per U.S. dollar. The overwhelming majority of the subjects earned between US \$11 and \$47, including show-up fees, with the average of US \$31.46.¹³

¹²The first three sessions conducted at UH did not have a quiz. The quiz was later included to facilitate subject understanding of the instructions. The main instructions, which were identical for all sessions, contained many hypothetical examples to ensure subject understanding. We test whether the quiz had an effect on subject behavior in the experiment by comparing pre-shock average capacities, prices, earnings and sale volumes in sessions with and without the quiz. The null hypothesis that the pre-shock market capacities, prices, earnings and sale volumes in markets where the subjects did and did not take the quiz were drawn from equal distributions, cannot be rejected at any conventional significance level (Mann-Whitney test, two-sided). We conclude that the quiz, while possibly facilitating subject understanding of the instructions, did not have a significant effect on subject actual behavior.

¹³Sessions 1 and 2 had a higher exchange rate of 1000 experimental dollars per U.S. dollar, resulting in much higher dollar earnings, with no significant differences in subject behavior from the remainder of the sessions. One outlier subject in Session 10 earned \$75 by ripping off nearly all monopoly profits in the market, while their competitor earned only \$14. In another market in Session 10, both subjects went bankrupt; the latter market is excluded from the analysis.

3 Results

The analysis is organized in two subsections. First, we look at the aggregate results, focusing on treatment effects. Next, we study convergence properties of each market, allowing for market heterogeneity within and across treatments.

Aggregate results and cross-treatment comparisons

The data from the experimental sessions are presented in Tables 2-4 and Figures 1-2. The data analysis revealed no significant differences in market performances between the UHM and UAA subject pools; hence we present the statistics by treatment pooled across both locations. Tables 2-4 show descriptive statistics by treatment, with independent markets as the units of observation. The tables report the total capacities (Table 2) produced in each market, in physical units; the average selling price of the goods weighted by the number of sales at each price (Table 3), and the average subject earnings per period (Table 4), in experimental dollars. We report the descriptive statistics for the span of periods prior to the demand shock ("before shock" periods); for the short span between the demand shock and the period when the coordination mechanism is imposed in the corresponding treatments ("shock" periods 22-24); and the periods following the imposition of the treatments ("after shock" periods). Before and after shock data are organized into sevenperiod intervals: early periods before the demand shock (periods 8-14);¹⁴ later periods before the shock (periods 15-21); "early" after-shock periods, which are seven periods right after the capacity coordination institutions in the corresponding treatments were imposed (periods 25-31); and "late" after-shock periods, from period 32 till the end of the experiment (typically, periods 32-39).¹⁵ To account for subject learning in early periods before the shock, we use the later periods before the demand change (periods 15-21), rather than the earlier periods, as a benchmark for comparison with the shock and after-shock periods. Further, we will compare market characteristics in the early after-shock periods (periods 25-31) with those in the later after-shock periods (periods 32-end) to evaluate if the speed of adjustment to the demand change varied across treatments.

Figures 1-2 display time-series data for capacities, prices and profit medians, as well as market sales. Figure 1 compares No Negotiations markets with all Negotiations markets pooled, whereas Figure 2 shows the medians for all four treatments separately. We also display the benchmark theoretical predictions for Monopoly, Cournot, and Competitive Equilibrium market dynamics. Note the shift in these curves that occurs in period 22 representing the demand shock imposed at that time.

TABLES 2-4 AND FIGURES 1-2 AROUND HERE

¹⁴The statistics for the first several periods of each session are not reported to control for potentially wide variations in the time it took subjects to familiarize themselves with the experiment structure.

¹⁵Two sessions were cut short due to time constraint with the shortest ending in the period 35. See Table 1.

Large standard deviations of the variables, reported in Tables 2-4, indicate substantial variations in the data across markets in every treatment. In addition, prices and capacities varied within each market across time periods. The large variations observed in the data are consistent with findings by Davis (1999), who posits that it is the specific nature of the two-step task in this environment that makes it challenging for subjects. The Kreps and Sheinkman (1983) model requires each seller to perform sophisticated backward induction in order to determine the predicted capacity setting. However, the variations narrowed over the course of each session in all treatments¹⁶ suggesting substantial learning effects in the course of the session. More importantly, despite the noise in the data, the results below clearly demonstrate that experimental subject behavior was sensitive to both changes in the demand conditions, and to variations in institutions.

We start by documenting the performance of experimental markets in the periods before the shock. Note that our treatments are all identical up to period 24 (i.e., until institutional arrangements to coordinate capacities are put in place in the corresponding treatments). Therefore, we pool the data across treatments in the pre-shock and shock periods.

Result 1 Prior to the demand shock, subjects often set capacities well in excess of those predicted by Kreps and Sheinkman (1983). Yet, in most markets subjects set capacities below the competitive equilibrium benchmark.

Support: Figures 1-2 ("Capacity" panels), Table 2. Based on periods 15-21 averages, the market capacities before the shock were at or above the Competitive Equilibrium predictions in 10 out of 41 markets, between the Cournot and the Competitive Equilibrium predictions in 25 out of 41 markets, and below the Cournot levels in the remaining 6 markets. The average (as well as the median; see Figure 2) market capacities before the shock were between the Cournot and Competitive theoretical benchmarks in all treatments, with the overall mean of 231.59 (seven-period average before the shock) as compared to the Cournot capacity of 176 and the Competitive Equilibrium capacity of 264. \Box

Informal post-experiment debriefing suggested that some subjects were averse to exhausting their entire capacity and allowing their counterpart to serve a portion of the demand at a higher price. This high capacity levels had a ripple effect throughout the data. Because of high capacity settings, pricing competition was substantial, driving average prices below the Cournot prediction.

Result 2 Even in the absence of explicit coordination, prices exceeded those predicted by strict Bertrand price competition, but were below Cournot level before the shock. Consistent with Kreps and Sheinkman (1983) prediction, markets with lower capacities were characterized by higher prices.

 $^{^{16}}$ The average standard deviation of market capacity within a market was 59.71 in the periods before the shock, but it decreased to 35.42 in the periods after the shock. This decrease in variations in capacities over the course of the sessions occurred in each treatment.

Support: Figures 1-2, Table 3. Based on periods 15-21 averages, the mean price before the shock was 25.54 experimental dollars, as compared to the Cournot prediction of 32 and the Competitive Equilibrium prediction of 10 experimental dollars. Comparing prices and capacities across markets, the market trading price was negatively related to market capacity: in markets with average capacity exceeding the competitive equilibrium, the average trading price was 17.48 experimental dollars, as compared to the average price of 25.39 in the markets with capacities averaging between the Competitive and Cournot predictions, and compared to the average price of 39.66 in the markets with capacities at or below the Cournot level. We further analyzed whether, having set the capacities, the subjects made pricing decisions in accordance with the KS predictions. Whereas the prices in the pricing subgames fell within the exact theoretical bounds only in 40% of the cases before the shock, they were within 5 experimental dollars from the theoretical predictions in 81% of the cases. The average price deviation from the theoretically predicted price (or the range of prices, if the equilibrium prediction in the pricing subgame involved mixed strategies) was only 0.96 experimental dollars. \Box

We conclude that advanced capacity setting allowed our experimental subjects to achieve and sustain below competitive equilibrium production levels and above marginal cost prices even without explicit coordination. This confirms the findings by Davis (1999) on super-competitive pricing, in a quite different market setting. Yet, the observed market outcomes were, on average, characterized by higher capacities and lower prices than the KS (1983) model predicts. Given capacities, the sellers in our experiment charged prices that were, on average, slightly above the theoretically predicted, as documented in the support to Result 2. As a consequence, some capacities were not utilized. Comparing market capacities with sales (see Figures 1-2), the markets before the shock were characterized by an average excess capacity of 52.11 units, which was reduced to 38.34 units in the seven periods immediately preceding the shock.

We now turn to the effects of the unexpected demand change on market performance. In this section, we rely on non-parametric tests to evaluate the differences across time intervals (Wilcoxon signed ranks test) and across treatments (Wilcoxon-Mann-Whitney rank sum test; WMW hereafter), with individual market averages used as the units of observation. The reported p-values are for one-sided tests when the underlying hypotheses are directional; that is, when comparing market characteristics before and after the shock, and when comparing the negotiations and the no negotiations markets. In all other cases, the reported p-values are for two-sided tests.

Result 3 Substantial capacity reductions occurred immediately following the demand shock.

Support: Figures 1-2, Table 2. Comparing market capacity levels between the pre-shock periods (periods 15-21) and shock periods (periods 22-24), capacities fell significantly immediately following

the shock (p-value is 0.0008, Wilcoxon signed ranks test, one-sided). On average, capacity decreased by 24.78 units in the shock periods as compared to seven periods before the shock. \Box

Result 4 Prices and seller profits dropped immediately after the demand shock.

Support: Figures 1-2, Tables 3-4. Prices and seller profits fell immediately following the shock (in periods 22-24), as compared to before the shock (periods 15-21); the corresponding p-values are 0.0001 for trading prices and 0.0000 for seller profits. The average trading price decreased by 3.79 experimental dollars, which is not significantly different from the decrease of 4 experimental dollars that would occur under Cournot-level equilibrium pricing (p-value is 0.9638). Seller profits decreased, on average, by 596.96 experimental dollars, which again is not significantly different from a decrease of 640 experimental dollars that would occur following the shift to the new equilibrium in the KS model (p-value is 0.8005). \Box

The above two results clearly demonstrate that the sellers in our experimental markets started adjusting their behavior immediately in response to the change in market conditions. This presents evidence that cost-cutting capacity reduction in industries in crisis can occur even if firms are unable to coordinate the reductions explicitly.¹⁷ However, capacity coordination did allow for a larger and faster decrease in excess capacities, as we demonstrate below.

We now compare the ability of different capacity coordination institutions to help producers to adjust to new demand conditions, as well as to raise prices and profits. In analyzing treatment effects, we focus on comparing the changes in key variables, rather than their absolute values, across the multi-period intervals defined above as "before shock," "shock," and "after shock." This allows us to directly compare the treatment effects while controlling for naturally occurring variation in the baseline (before-shock and shock) values.¹⁸

Result 5 Capacity coordination resulted in a larger and faster reduction of excess market capacity following the demand shock.

Support: Figures 1-2, Table 2. The capacity decreased, on average, from the shock periods to the seven periods after the shock (periods 25-31) by 51.3 units in the markets with capacity coordination, but it only decreased by 21.3 units in the markets without capacity coordination; the difference is statistically significant (p-value is .0124, WMW test). Considering the data for each coordination treatment separately, the reduction in capacities was significantly larger in two out of

¹⁷The media also present ample evidence of unilateral capacity reductions in industries in crises; e.g., "Airlines Cut Long Flights To Save Fuel Costs," *Wall Street Journal*, July 8, 2008; "*Continental* to cut 3,000 jobs, slash capacity, flights," marketwatch.com, June 5, 2008; "*Alcoa* to Reduce Capacity By 18%, Cut 13,500 Workers," bloomberg.com, January 9, 2009.

¹⁸We also conducted difference-in-differences estimations of treatment effects using panel regressions. The results, reported in Table 9 in Appendix C, are overwhelmingly the same as those based on the non-parametric tests.

the three capacity coordination treatments as compared to the baseline NoNegNoPun treatment (NegNoPun: p-value is 0.0144; NegPun: p-value is 0.0173). As evident in Table 2, the average after-shock capacities in coordination treatments NegNoPun and NegPun were below that in the baseline NoPunNoNeg treatment, and near the Cournot prediction in the first seven periods following the demand shock (periods 25-31). While capacity reduction continued in the NoNegNoPun treatment in the late after-shock periods (periods 32-end), the overall capacity decrease from the shock periods to the late after-shock periods remained larger is the markets with coordination (56.81 units) than in the markets without coordination (35.6 units). \Box

Result 6 In the absence of explicit capacity coordination, prices did not significantly change in the periods after the demand shock. In contrast, with capacity coordination, prices increased in the after-shock periods, reaching or exceeding the Cournot level. The differences in price dynamics between the no coordination and coordination treatments are significant.

Support: Figures 1-2, Table 3. Comparing the prices in the shock and after-shock periods, in the baseline NoNegNoPun treatment the prices decreased in the first seven periods after the shock by the average of 1.25 experimental dollars, and then increased by 1.76 experimental dollars in the following periods; neither the initial decrease nor the subsequent increase are statistically significant (the corresponding p-values are 0.9218 and 0.4316, sign rank test.) In contrast, the prices increased from the shock to the after-shock periods in all negotiation treatments by the overall average of 7.48 experimental dollars by the early periods after the shock, and by the overall average of 8.30 experimental dollars by the late periods; the increase is statistically significant (p-value is 0.0000 for comparison between both time intervals). The difference in price changes between the no negotiations and the negotiations treatments is highly significant for the early after-shock periods (p = 0.0016, WMW test), and is still significant for the late after-shock periods (p = 0.0733).

It is also instructive to compare price changes between pre-shock and after-shock periods. Given either Cournot or Monopoly benchmark predictions, a negative demand shock would be expected to reduce prices in after-shock periods. Indeed, the average price decreased from the seven periods before the shock to the seven periods after the shock in the baseline NoNegNoPun treatment (pvalue is 0.0137, sign rank test). In contrast, the average price in the negotiations markets *increased* from before to after the shock (p-value is 0.0456). The average price was below the Cournot prediction in the seven periods after the shock in the NoNegNoPun treatment (p-value is 0.0367), but it was not statistically different from the Cournot prediction in the negotiation treatments (p=0.3779). Even though the average price in the no negotiations treatment reached the preshock level in the late periods after the shock, it was still below the average prices in each of the negotiations treatments. \Box From Figures 1-2, one can clearly recognize that in the capacity coordination treatments, prices return to and further exceed pre-shock levels despite a reduction in demand. This mirrors the post-exemption price increases for inter-island travel in Hawaii documented in Blair et al. (2007) and Kamita (2010). This finding suggests the potential for consumer-welfare reducing collusion beyond that which would occur in the absence of explicit coordination across sellers.

Result 7 Without negotiations, profits stayed at the low shock-period levels for many periods after the demand shock and did not start recovering until later in the sessions. In contrast, with explicit capacity coordination, the after-shock profits quickly recovered to the pre-shock levels.

Support: Figures 1-2, Table 4. Looking at the baseline NoNegNoPun treatment, the seller profits did not change significantly from the shock periods in the first seven periods after the shock (p-value is 0.6250). Consequently, the after-shock profits stayed significantly below the before-shock profits in the first seven periods following the demand shock (p=0.0136). Even though the profits started to increase in the late after-shock periods, they stayed, on average, below the pre-shock levels. The picture is quite different for two out of three negotiations treatments. The profits increased significantly from the shock periods to the seven periods after the shock in both NegNoPun and NegPun treatments; p-values are: 0.0274 for NegNoPun and 0.0010 for NegPun. Further, profits reached the pre-shock levels in the seven periods after the shock: p-values for the differences between the pre-shock profits and the after-shock profits are 0.8992 for NegNoPun and 0.3652 for NegPun. In the third negotiations treatment, NegChat, the profits took longer to recover, but they did experience strong recovery to almost exactly the pre-shock levels in the later periods (see Figure 2). \Box

Note that in the absence of any capacity coordination, a demand reduction would be expected to reduce the earnings of the sellers in the market, unless the earnings were already zero (as under perfect competition). Again, the above finding suggests the potential for consumer-welfare reducing collusion in markets where explicit capacity coordination is possible. Of course, if the policy goal is to maintain the solvency of firms in the face of losses from a demand shock, these findings suggest the potential of capacity coordination to reduce losses and increase profitability to firms.

We now turn to comparison of treatments that allow for explicit capacity coordination. We consider the effect of the agreement enforcement first, by comparing NegNoPun and NegPun treatments.

Result 8 Punishment for non-compliance in capacity coordination treatments had little effect on performance in the early periods after the negotiations started. In later periods, markets with capacity enforcement maintained low Cournot-level capacities and high profits, while markets without enforcement exhibited more variable capacities and a drop in profits.

Support: Figure 2, Tables 2-4. Average market capacities, prices and subject profits were virtually identical between the NegNoPun and the NegPun treatments in the first seven periods after the negotiations started (periods 25-31). The average capacities and prices were exactly at the Cournot prediction, with the profits not significantly different from the Cournot level. In later periods (periods 32-end), average capacities, prices and profits stayed unchanged in the NegPun treatment, whereas in the NegNoPun treatment, the average market capacity increased from 146.64 units to 161.19 units, and the average subject profit decreased from 1021.18 to 855.34 experimental dollars. The decrease in profits from early to late after-shock periods was marginally significantly larger in NegNoPun treatment than in the NegPun treatment (p=0.0905, WMW test). In addition, capacities in NegNoPun became more variable: the standard deviation of average market capacity across markets increased from 38.68 units in the early after-shock periods to 68.35 units in the late periods. At the same time, the standard deviation of capacity in the NegPun markets remained unchanged at about 33 units between these two time intervals. \Box

The negligible effect of enforcement, especially in early negotiations periods, may appear surprising. Comparison of agreed-upon capacities with actual firm capacity choices in negotiations treatment provides explanation for this phenomenon. Table 5 compares agreed-upon and actual per-person average market capacities in negotiation treatments in early and late negotiation periods.¹⁹

TABLE 5 AROUND HERE

The table indicates that in the negotiation treatment with agreement enforcement (NegPun), the subjects were more careful in not exceeding agreed-upon capacities as compared to the treatment with no agreement enforcement (NegNoPun); the average deviation from agreed-upon capacity in the early negotiations periods in NegPun markets was -6.89, which was significantly different (lower) than the average deviation of 6.23 in NegNoPun markets (p-value is 0.0112). This indicates that conditional on agreed capacity levels, the capacity agreements were more effective (better enforced) in the punishment treatment. However, the average agreed-upon capacity was marginally higher in the NegPun markets as compared to NegNoPun markets: 78.67 in NegPun as compared to 65.64 in NegNoPun (p-value 0.1053). That is, capacity agreements were less stringent in view of the punishment. The two effects worked in opposite directions, resulting in no differences in actual capacities between these two treatments in the early negotiations periods. In later periods (periods 32-end), both the average agreed-upon capacity and the capacity deviations from the agreement slightly increased in NegNoPun markets, most likely due to the lack of enforcement. This led to more variable market capacities and a drop in individual profits (Result 8). In contrast, the actual

¹⁹The average capacity deviation of the capacities from the agreed-upon capacities reported in Table 5 are calculated using individual market averages as units of observations; thus, the average deviations are not necessarily equal to the differences between the average agreed-upon and actual capacities.

capacities in NegPun treatment (with enforcement) remained below the agreed level, resulting in more stable capacities and profits.

In sum, the apparent inefficacy of the punishment mechanism in the early after-shock periods may be attributed to the subjects' reluctance to set low capacity targets in view of the punishment for exceeding these targets. Nevertheless, capacity agreements were followed through more carefully in the markets with punishment, thus leading, in the late periods, to more stable agreements and higher profits. In the markets without agreement enforcement, sellers tended to deviate from agreed-upon capacities more with time, undermining the advantages of capacity coordination in the late periods.

We next consider the effect of adding free-style communication on sellers' ability to increase price and earnings.

Result 9 Free-style communication (chat) had a significant effect on the dynamics of capacities and prices in late negotiations periods.

Support: Figure 2, Tables 2-4. In the early negotiations periods (periods 25-31), the market prices, capacities and earnings in the NegChat treatment experienced the same or less sizable recovery after the shock as the other two capacity coordination treatments, NegNoPun and NegPun. The picture is different for the late negotiations periods (periods 32-end). While the performance of the two negotiations treatments without Chat either stabilized (as in NegPun) or even slightly deteriorated (as in NegNoPun), the NegChat markets demonstrated a significant decrease in capacities (p-value for the difference between early and late negotiation periods is 0.0136, sign rank test, two-sided), and a significant increase in prices and profits (p-values are 0.0274 for prices and 0.0098 for profits) in this time interval. Figure 2 demonstrates that towards the very end of the sessions, the median prices and profits in the NegChat treatment were above the medians in all other treatments. \Box

A closer look into capacity negotiations in NegChat markets allows us to explain why adding chat to structured negotiations had little effect until the very late periods. Table 6 present a summary of agreed-upon capacities, actual capacities, and chat contents by market.

TABLE 6 AROUND HERE

The table suggests that in only a few markets were the sellers able to quickly agree on low capacity levels. In some markets chat was barely used at all, whereas in others the sellers took a long while to settle on low capacity agreements (see the "Chat contents" column of the table). Most likely, this may be attributed to participants' inexperience with the complex two-stage capacity-price setting institution. Still, most markets were able to reach working agreements in the late periods of the experiment. Further, even though the agreements in the NegChat markets were not enforced through an explicit punishment clause, the free-style communication option apparently worked as a substitute for agreement enforcement. From Table 5, the sellers in the NegChat treatments followed the capacity agreements most closely in the late periods; the average per market deviation of the actual per person capacity from the agreed capacity was only 0.36 units.

The above results suggest the following. First, capacity coordination had a strong and immediate effect on the industry performance, both in terms of firms' ability to reduce capacities and to increase prices and profits. Second, the effects of additional institutional provisions, such as explicit enforcement clause and free-style communication, became the most pronounced in the late negotiations periods. Some of the delays in the after-shock adjustments and in treatment effects may be due to our experiment participants having little experience with these markets at the start. In the next section, we evaluate the likely long-term effects of the institutions after the sellers have gained experience with the institution.

Long-term effects and market convergence

The analysis above focuses on treatment-level effects. Now we focus on market-level analysis. Because the data displayed substantial variation across the 41 independent experimental markets, we evaluate each market against the alternative theoretical benchmarks of interest. Further, as the behavior in most markets may not have quite stabilized either by the time of the shock in the pre-shock part of the session, or by the end of the session in the after-shock part, we estimate the long-term convergence levels for capacities and prices. We use econometric techniques suggested by Noussair et al. (1995) to study long-term convergence properties for each individual market. This allows us to study within-treatment market heterogeneity and evaluate predictive power of the three alternative theoretical predictions discussed in Section 2: Competitive, Cournot and Monopoly benchmarks. It also allows us to better approximate the behavior of oligoplists with a long-term experience with the industry, as well as evaluate the likely long-term differences in the institutions of interest.

The following model, adopted from Noussair et al. (1995), is used to analyze the effect of time on the outcome variable (capacity or price) within each treatment and time interval (before or after the shock):

$$y_{it} = \sum_{i=1}^{N} (B_{0i}(1/t) + B_{1i}(t-1)/t)D_i + u_{it},$$
(1)

where i = 1, ..., N, is the market index, with N being the number of independent markets in a given treatment, and $t = 1, ..., T_i$ is the period index, with T_i being the number of period observations in a given market. D_i is the dummy variable for market *i*. Coefficients B_{0i} estimate market-specific starting levels for the variable of interest, whereas B_{1i} is the market-specific asymptote for the dependent variable. The error term u_{it} is assumed to be distributed normally with mean zero. We performed panel regressions using feasible generalized least squares estimation, allowing for panel-specific first-order autocorrelation within panels and heteroscedastisity across panels.

The panel regressions were run separately for each treatment to allow for different dynamics across treatments. To accommodate for market heterogeneity, we estimated market-specific asymptotes in each treatment regression. We also estimated different starting levels and asymptotes for before-the-shock time interval (periods 1-21) and after-the-shock interval (periods from 25, after capacity coordination had started in the corresponding treatments, until the end); for both time intervals, the starting period number was normalized to one. We allowed for different estimates for before and after the shock time intervals to accommodate for possible changes in convergence processes, as all three theoretical models predict changes in convergence levels after the shock.

The distribution of capacity and price asymptotes before and after the shock, by treatment, is displayed in Figures 3-4. The market observations are grouped into categories based on the proximity to the pre-shock and post-shock theoretical predictions of interest: Monopoly, Cournot and Competitive Equilibrium. As the theoretical predictions differ before and after the shock, the horizontal axes display the predictions for both time intervals side by side.

FIGURES 3-4 AROUND HERE

More detailed results based on the panel regression analysis are presented in Table 7 (Capacities) and Table 8 (Prices). The tables display estimated asymptotes for each markets, along with p-values for the Wald test of their equivalence to the Monopoly, Cournot, and Competitive Equilibrium (CE) predictions, both for before and after the shock time intervals. The tables also present the p-values for the equality of market asymptotes before and after the shock.

TABLES 7-8 AROUND HERE

Based on the regression analysis, we classify whether capacities and prices in each market converge to Monopoly, Cournot or Competitive Equilibrium levels. The results, as summarized in Tables 7-8, validate and strengthen our previous conclusions.

Result 10 There was considerable heterogeneity across markets both before and after the shock in all treatments. Before the shock, most of the markets were equilibrating towards levels between the CE and Cornot predictions in both capacities and prices. A significant minority of markets were equilibrating towards Cournot or monopoly outcomes even without explicit coordination.

Support: Figures 3-4, Tables 7-8. Before the shock, in 29 markets out of 41, capacity asymptotes exceeded the Cournot predictions, with 14 of them being no different than the CE level. Likewise, in 27 out of 41 markets, the price asymptotes were below the Cournot level. However, 12 markets had capacity asymptotes at or below the Cournot level, and 14 markets had price asymptotes at or

above the Cournot level. Two markets (market ID's 403 and 703) were able to achieve and sustain below-Cournot capacities and above-Cournot prices even without explicit coordination before the shock. \Box

Result 11 Capacity asymptotes shifted down after the shock in most markets in all treatments. However, markets in capacity coordination treatments were equilibrating towards eliminating excess capacity and achieving Cournot capacities and below more often than markets without capacity coordination.

Support: Figures 3-4, Tables 7-8. In the baseline NoNegNoPun treatment, only 40% (4 out of 10) of the markets had after-shock capacity asymptotes at or below the Cournot level, and only 10% (1 market) had reduced capacity to Monopoly level. Whereas for the three capacity coordination treatments, 71.0% (or 22 out of 31) markets had asymptotes at or below the Cournot level, with 45% of markets (14 out of 31) reducing capacities to monopoly level. \Box

Result 12 Capacity coordination had a long-term pro-collusive effect on market prices: Without coordination, price asymptotes stayed the same or shifted down after the shock, whereas with coordination, price asymptotes often shifted up after the shock, with prices in many markets converging to monopoly levels.

Support: Figures 3-4, Tables 7-8. In the overwhelming majority of markets without coordination (9 out of of 10 markets), price asymptotes shifted down or stayed the same after the shock. In treatments with coordination, price asymptotes shifted up in 38.7% (12 out of 31) of markets; in 41.9% of markets with coordination (13 markets out of 31), price asymptotes after the shock were no different from the Monopoly level. \Box

Result 13 Among all treatments, the NegChat treatment that allowed free-style negotiations in addition to structured capacity coordination resulted in the highest share of markets converging to monopoly outcomes. However, the difference in proportions of monopoly markets between the NegChat treatment and other capacity coordination treatments is not statistically significant.

Support: Figures 3-4, Tables 7-8. In NegChat treatment, 80% (or 8 out of 10) of markets were converging to Cournot or above price levels, with 50% (or 5 out of 10) of markets converging to monopoly pricing. This compares to only 10% (1 out of 10) of markets converging to monopoly prices in no negotiations NoNegNoPun markets; the difference is marginally significant (p-value is 0.0704, Fisher exact test, one-sided). However, both NegNoPun and NegPun markets also had a significant proportion of markets (40% and 45%, respectively) converging to monopoly pricing. \Box

4 Discussion

This study provides us with a number of compelling results suggesting likely effects of capacity coordination on industry performance. Even though many subjects in our experiments tend to invest in excess capacity, the subjects quickly reduce capacity in response to a demand reduction in all treatments. This presents evidence that cost-cutting capacity reduction in industries in crisis can occur even if firms are unable to coordinate the reductions explicitly. However, we do observe that explicit capacity coordination results in a faster and larger reduction of market capacity following a demand shock, and a faster recovery of firm profits after the shock.

Further, our laboratory evidence clearly supports the conclusions of Blair et. al. (2007) and Kamita (2010) that the anti-trust exemptions have a pro-collusive effect, allowing prices to quickly return to pre-shock levels and then even rise above those levels despite a decrease in demand. The corresponding ability of capacity coordination to bring prices to monopoly levels in many markets suggests that anti-trust exemptions are likely to have a detrimental effects on consumer welfare.

An unexpected finding is the relative lack of importance of the punishment mechanism in enforcing capacity agreements, especially in early negotiations periods. Even though capacity coordination markets with enforcement had a less variable performance than capacity coordination markets with no enforcement towards the end of the experiment, the evidence is insufficient to predict significant differences between the two capacity coordination institutions in the long-run, as documented by the convergence dynamics analysis in Section 3. This suggests that the repeated nature of the game, supplemented by structured capacity coordination, may be sufficient to establish and sustain collusive practices, rendering explicit punishment mechanisms superfluous. However, we do find that free style communication in addition to structured negotiations may benefit the sellers even further; our experimental markets with free-style communication resulted in a higher share of monopoly outcomes than any other institution.

The finding that free-style communication does at least as well or better than explicit agreement enforcement may be somewhat surprising.²⁰ Yet, it is well in line with the existing experimental literature, which presents ample evidence that free-style non-binding communication often leads to increased cooperation (Holt, 1995). A likely reason, in view of the findings in behavioral economics, is that communication helps to "break the ice" and reduce social distance among competitiors. Armstrong and Huck (2010) point out that an implication for competition policy is that communication may foster a sense of loyalty and trust among firms, making it socially costly to cheat on agreements. Armonstrong and Huck propose further that face-to-face communication seems to foster collusion in the laboratory more effectively than computer-mediated communication. However, our experiments suggest that computer-mediated structured negotiations, supplemented by on-line

²⁰We are grateful to Rene Kamita for pointing this out.

chat, may be sufficient to resolve coordination problems and establish trust among firms.

It may also be surprising that not all sellers in our experiment were able to take full advantage of coordination opportunities, with, at most, half of all markets converging to monopoly outcomes, even in the treatment with free-style negotiations. Again, this result is well in line with previous market experiments. Holt (1995) concludes that the effectiveness of of non-binding communication in experimental markets is variable and sensitive to many factors, including the trading institution and the participants' incentives to defect. Andersson and Wengstroem (2007) report that when given a chance to costlessly communicate by computer in a repeated Bertrand duopoly, subjects exchanged messages frequently, but they had difficulties in maintaining collusive agreements. The two-stage Kreps and Sheinkman (1993) duopoly that we study is arguably more complicated than Bertrand price-setting duopoly; we therefore consider the observed 50% perfect collusion rate quite high.

It is notable that we obtain convincing evidence on the effects of capacity coordination on industry outcomes despite the rather complex nature of the institution and the lack of experience of our experimental subjects. One would expect the effects of capacity coordination to be even more pronounced with experienced and highly motivated sellers. For this reason, we believe that these experimental results, along with already existing empirical evidence, may have strong implications for real-world industry practices.

Appendix A: Instructions and Quiz

Appendix B: Subject decision screen: price-setting stage Appendix C: Treatment effects: panel regressions

TABLE 9 HERE

References

- Albaek, S., Mollgaard, P., and P. Overgaard. 1997. Government-Assisted Oligopoly Coordination? A Concrete Case. *Journal of Industrial Economics* 45(4): 429-443.
- [2] Alexander, B. 1994. The Impact of the National Industrial Recovery Act on Cartel Formation and Maintenance Costs. *Review of Economics and Statistics* 76(2), 24554.
- [3] Aloha Airlines, Inc. and Hawaiian Airline, Inc. 2002. Joint Application of Aloha Airlines, Inc. and Hawaiian Airlines, Inc. for Antitrust Immunity, Before the Department of Transportation, Docket OST-2002-13002-1, dated July 31, 2002.

- [4] Andersson, O., and E. Wengstroem. 2007. Do Antitrust Laws Facilitate Collusion? Experimental Evidence on Costly Communication in Duopolies. *Scandinavian Journal of Economics* 109(2), 331-339.
- [5] Apesteguia, J., Dufwenberg, M., and R. Selten. 2007. Blowing the whistle. *Economic Theory* 31(1), 143-166.
- [6] Armstrong, M., and S. Huck. 2010. Behavioral Economics as Applied to Firms: A Primer. Competition Policy International 6(1), 3-45.
- [7] Blair, R. D., Mak, J., Bonham, C. 2007. Collusive Duopoly: The Effects of the Aloha and Hawaiian Airlines' Agreement to Reduce Capacity. Antitrust Law Journal 74(2), 409-438.
- [8] Brown, A., Plott, C. and Sullivan, H. 2009. The Nature of Collusion Facilitating and Collusion Breaking Power of Simultaneous Ascending Price and Descending Price Auctions. *Economic Inquiry* 47 (3), 395-424.
- [9] Crawford, V. 1998. A survey of experiments on communication via cheap talk. Journal of Economic Theory 78 (2), 286-298.
- [10] Davis, D. 1999. Advance Production and Cournot Outcomes: An Experimental Investigation. Journal of Economic Behavior and Organization 40, 59-79.
- [11] Davis, D., Harrison, G., and A. Williams. 1993. Convergence to nonstationary competitive equilibria : An experimental analysis. *Journal of Economic Behavior and Organization* 22(3), 305-326.
- [12] Deck C., and B. Wilson. 2008. Experimental gasoline markets. Journal of Economic Behavior and Organization 67, 134149.
- [13] Dufwenberg, M. and Gneezy, U. 2000. Price Competition and Market Concentration: An Experimental Study. International Journal of Industrial Organization 18(1), 7-22.
- [14] Durham, Y., McCabe, K., Olson, M., Rassenti, S., and Smith, V. 2004. Oligopoly competition in Fixed Cost Environments. *International Journal of Industrial Organization* 22(2), 147-162.
- [15] Eads, G. C. 1974. Airline Capacity Limitations Controls: Public Vice or Public Virtue? American Economic Review, Papers and Proceedings, 64(2), 36571.
- [16] Fischbacher, U., 2007. z-Tree: Zurich Toolbox for Ready-made Economic Experiments. Experimental Economics 10, 171-178.

- [17] Fiebig, A., 1999. Crisis Cartels and the Triumph of Industrial Policy over Competition Law in Europe. Brooklyn Journal of International Law 25(3), 607-638.
- [18] Fouraker, L. and Siegel, S. 1963. Bargaining Behavior. McGraw-Hill.
- [19] Grether D., Plott, C. 1984. The Effects of Market Practices in Oligopolistic Markets: an Experimental Examination of the Ethyl Case. *Economic Inquiry* 22, pp. 470-507.
- [20] Goodwin, D., and S. Mestelman. 2010. A note comparing the capacity setting performance of the Kreps-Scheinkman duopoly model with the Cournot duopoly model in a laboratory setting. *International Journal of Industrial Organization* 28(5), 522-525.
- [21] Hinloopen, J., Soetevent, A. 2008. Laboratory evidence on the effectiveness of corporate leniency programs. RAND Journal of Economics, Vol. 39, pp. 607-616.
- [22] Holt, C. 1995. Industrial Organization: A Survey of Laboratory Research. In: J. Kagel and A. Roth (eds.), The Handbook of Experimental Economics. Princeton University Press.
- [23] Huck, S., Normann, H., and Oechssler, J. 2004. Two Are Few and Four Are Many: Number Effects in Experimental Oligopolies. *Journal of Economic Behavior and Organization* 53(4), 435-446.
- [24] Kamita, Rene Y. 2010. Analyzing the Effects of Temporary Antitrust Immunity: The Aloha-Hawaiian Immunity Agreement. *Journal of Law and Economics* 53, 239-261.
- [25] Kreps, D., Sheinkman, J., 1983. Quantity Precommitment and Bertrand Competition Yield Cournot Outcomes. Bell Journal of Economics 14, 326-337.
- [26] Kruse, J.B., Rassenti, S., Reynolds, S. S., Smith, V. L. 1994. Bertrand-Edgeworth Competition in Experimental Markets. *Econometrica* 62(2), 343-371.
- [27] Levenstein, M. and Suslow, V. 2006. What Determines Cartel Success? Journal of Economic Literature 44(1), 43-95.
- [28] Muren, A. 2000. Quantity Precommitment In An Experimental Oligopoly Market. Journal of Economic Behavior and Organization 41(2), 147-157.
- [29] Noussair, C., Plott, C., and Riezman, R. 1995. An Experimental Investigation of the Patterns of International Trade. *The American Economic Review*, Vol. 85, No. 3, pp. 462-491.
- [30] Offerman, T., Potters, J. 2006. Does Auctioning of Entry Licences Induce Collusion? An Experimental Study. *Review of Economic Studies*, Vol. 73(3), 769-791.

- [31] Osborne, M., Pitchik, C. 1986. Price Competition in a Capacity-Constrained Duopoly. Journal of Economic Theory 38(2), 238-260.
- [32] Peck, M., Levin, R., Goto, A. 1987 Picking Losers: Public Policy toward Declining Industries in Japan. Journal of Japanese Studies 13(1), 79-123.
- [33] Plott, C. 1989. An Updated Review of Industrial Organization Applications of Experimental Methods. In R. Schmalensee and R. Willig (eds.), *The Handbook of Industrial Organization*. New York: North-Holland. V. 2.
- [34] Rees, R. 1993. Collusive Equilibrium in the Great Salt Duopoly. *The Economic Journal* 103, 833-848.
- [35] Simpson, P. 2004. Response to Decline in the Western European Synthetic Fibre Industry: An Investigation of a Crisis Cartel. In: P. Grossman (Ed.) How Cartel Endure and How they Fail, Edward Elgar.
- [36] Sjostrom, William. 1989. Collusion in Ocean Shipping: A Test of Monopoly and Empty Core Models. The Journal of Political Economy 97, 1160-1179.
- [37] Staiger R., Wolak, F. 1992. Collusive Pricing with Capacity Constraints in the Presence of Demand Uncertainty. *The Rand Journal of Economics* 23(2): 203-220.
- [38] Tirole, J. 1988. Theory of Industrial Organization. MIT University Press.
- [39] Van Boening, M., Wilcox, N., 1996. Avoidable Cost: Ride a Double Auction Roller Coaster. The American Economic Review 86(3), 461-477.
- [40] Williams, A., and Vernon L. Smith. 1984. Cyclical Double-Auction Markets With and Without Speculators, *Journal of Business* 57, pp. 1-33.

List of Tables

- 1. Summary of experimental sessions
- 2. Average Total Market Capacity Before and After the Shock, physical units
- 3. Average Transaction Price Before and After the Shock, experimental dollars
- 4. Subject Per Period Profits Before and After the Shock, experimental dollars
- 5. Capacity Agreements in Negotiations Treatments, Physical Units per Seller
- 6. Summary of Capacity Negotiations in Markets with Free-Style Chat
- 7. Capacity Asymptotes Before and After the Shock
- 8. Price Asymptotes Before and After the Shock
- 9. Treatment effects: Cross-sectional time-series generalized least squares regressions

List of Figures

- 1. Median market characteristics by period: No Negotiations compared to Pooled Negotiation treatments
- 2. Median market characteristics by period, by treatment
- 3. Distribution of Capacity Asymptotes Before and After Shock
- 4. Distribution of Price Asymptotes Before and After Shock

				No. of	Ending	
Treatment	Session Date	Session ID	Location	Markets	Period	Quiz?
No Negotiation	5/4/2007	1	UHM	2	35	Ν
No Punishment	5/22/2007	4	UHM	4	39	Y
(NoNegNoPun)	6/10/2010	12	UAA	4	39	Y
Negotiation with	5/10/2007	2	UHM	2	39	Ν
Punishment	5/18/2007	3	UHM	3	39	Ν
(NegPun)	5/23/2007	5	UHM	3	39	Y
	6/3/2010	10	UAA	3*	39	Y
Negotiation w/o	5/24/2007	6	UHM	4	39	Y
Punishment	4/27/2010	9	UAA	2	39	Y
(NegNoPun)	6/9/2010	11	UAA	4	39	Y
Negotiation w/o	9/28/2007	7	UHM	5	36	Y
Punishment, with	10/3/2007	8	UHM	2	39	Y
Chat (NegChat)	6/17/2010	13	UAA	3	39	Y

TABLE 1. Summary of Experimental Sessions

*Session 10 originally had four independent markets, but one market was excluded due to bankruptcies

Benchmark Predictions:	EARLY BEFORE: Per. 8-14	BEFORE SHOCK: Per. 15-21	SHOCK: Per. 22-24	EARLY AFTER: Per. 25-31	LATE AFTER: Per. 32-end
Monopoly	132	132	108	108	108
Cournot	176	176	144	144	144
Competitive	264	264	216	216	216
NoNegNoPun (10 obs) Mean	227.74	234.56	205.50	184.20	169.90
Standard Deviation	(52.31)	(49.63)	(58.50)	(42.24)	(34.70)
NegPun (11 obs) Mean	221.35	227.61	198.58	143.78	145.65
Standard Deviation	53.78	81.99	52.15	33.59	33.92
NegNoPun (10 obs) Mean	277.71	234.24	211.87	146.64	161.19
Standard Deviation	(74.27)	(52.83)	(54.04)	(38.86)	(68.35)
NegChat (10 obs) Mean	254.49	230.36	212.13	178.61	144.92
Standard Deviation	(77.48)	(51.52)	(42.82)	(65.64)	(54.40)

 TABLE 2. Average Total Market Capacity Before and After the Shock, physical units

		CK· SHO	JCK: AF		LATE AFTER:
s: Per. 8	-14 Per. 1	5-21 Per. 2	22-24 Per. 2	25-31 P	er. 32-end
	43	43	37	37	37
	32	32	28	28	28
	10	10	10	10	10
Iean 25.	08 25	.63 23	3.47 22	2.21	25.22
ation (8.6	60) (7.	70) (9	.72) (7	.46)	(6.21)
<i>lean</i> 27.	06 27	.29 2	1.54 29	9.64	28.26
ation (6.1	6) (9.	01) (5	.73) (6	.88)	(7.77)
<i>1ean</i> 23.	97 24	.16 2	1.49 29	9.82	28.56
ation (5.5	<i>(</i> 9) (9.	15) (7	.15) (6	.61)	(8.84)
<i>1ean</i> 24.	50 24	.96 20	0.54 20	6.50	31.81
ation (9.8	(8.) (8.)	17) (5	.75) (9	.38)	(9.34)
	BEFOI Per. 8 Mean 25. ation (8.6 Mean 27. ation (6.1 Mean 23. ation (5.5 Mean 24.	BEFORE: SHO Per. 8-14 Per. 1 43 32 10 10 Mean 25.08 25 ation (8.60) (7. Mean 27.06 27 ation (6.16) (9. Mean 23.97 24 ation (5.59) (9. Mean 24.50 24	BEFORE:SHOCK:SHOCK:Per. 3 $Per. 8-14$ Per. 15-21Per. 2434332321010Mean25.0825.6322ation(8.60)(7.70)(9)Mean27.0627.2922ation(6.16)(9.01)(5)Mean23.9724.1622ation(5.59)(9.15)(7)Mean24.5024.9620	BEFORE: SHOCK: Per. 8-14SHOCK: Per. 22-24AF $Per. 8-14$ Per. 15-21Per. 22-24Per. 22-24 43 43 37 32 32 28 10 10 10 $Mean$ 25.08 25.63 23.47 22 21.54 29 $ation$ (8.60) (7.70) (9.72) (77) (9.72) (77) $Mean$ 27.06 27.29 21.54 29 21.54 29 $ation$ (6.16) (9.01) (5.73) (6.16) (9.01) (5.73) (66) $Mean$ 23.97 24.16 21.49 29 $ation$ (5.59) (9.15) (7.15) (66) $Mean$ 24.50 24.96 20.54 20	s: $\stackrel{\text{BEFORE:}{\text{Per. 8-14}}{\text{Per. 15-21}}$ $\stackrel{\text{SHOCK:}{\text{Per. 22-24}}{\text{Per. 25-31}}$ $\stackrel{\text{AFTER:}{\text{Per. 25-31}}{\text{Per. 25-31}}$ 434337373232282810101010Mean25.0825.6323.4722.21ation(8.60)(7.70)(9.72)(7.46)Mean27.0627.2921.5429.64ation(6.16)(9.01)(5.73)(6.88)Mean23.9724.1621.4929.82ation(5.59)(9.15)(7.15)(6.61)Mean24.5024.9620.5426.50

TABLE 3. Average Transaction Price Before and After the Shock, experimental dollars

EARLY	BEFORE	SHOCK	EARLY	LATE
BEFORE:	SHOCK:		AFTER:	AFTER:
Per. 8-14	Per. 15-21	Per. 22-24	Per. 25-31	Per. 32-end
2178	2178	1458	1458	1458
1936	1936	1296	1296	1296
0	0	0	0	0
1133.87	1142.97	568.83	675.02	930.94
(603.50)	(628.93)	(516.68)	(512.69)	(426.23)
1260.54	1261.85	648.06	1118.41	1122.80
(579.74)	(830.16)	(483.82)	(346.21)	(363.97)
781.16	1049.98	440.40	1021.18	855.34
(701.91)	(555.12)	(525.43)	(311.82)	(509.69)
897.57	1091.24	502.57	716.70	1066.46
(844.78)	(580.23)	(342.83)	(631.38)	(439.37)
	BEFORE: Per. 8-14 2178 1936 0 1133.87 (603.50) 1260.54 (579.74) 781.16 (701.91) 897.57	BEFORE: Per. 8-14SHOCK: Per. 15-212178217819361936001133.871142.97(603.50)(628.93)1260.541261.85(579.74)(830.16)781.161049.98(701.91)(555.12)897.571091.24	BEFORE: Per. 8-14SHOCK: Per. 15-21SHOCK: Per. 22-242178217814581936193612960001133.871142.97568.83(603.50)(628.93)(516.68)1260.541261.85648.06(579.74)(830.16)(483.82)781.161049.98440.40(701.91)(555.12)(525.43)897.571091.24502.57	BEFORE: Per. 8-14SHOCK: Per. 15-21SHOCK: Per. 22-24AFTER: Per. 25-312178217814581458193619361296129600001133.871142.97568.83675.02(603.50)(628.93)(516.68)(512.69)1260.541261.85648.061118.41(579.74)(830.16)(483.82)(346.21)781.161049.98440.401021.18(701.91)(555.12)(525.43)(311.82)897.571091.24502.57716.70

TABLE 4. Subject Per Period Profits Before and After the Shock, experimental dollars

TABLE 5 Capacity agreements in negotiations treatments, physical units per seller

			y Negotiat eriods 25-3			Negotiati riods 32-e		p-val	p-value:** Early=Late			
Treatment		Agreed Capacity	Actual Capacity	Capacity Deviation	Agreed Capacity	Actual Capacity	Capacity Deviation	Agreed Capacity	Actual Capacity	Capacity Deviation		
NoNegNoPun (10 obs)	Mean		92.31			84.08			0.0527			
Standard	d Deviation		(20.72)			(16.86)						
NegPun (11 obs)	Mean	78.67	71.61	-6.89	82.44	72.90	-9.54	0.9658	0.9658	0.8310		
Standard	d Deviation	(23.14)	(16.32)	(7.91)	(28.21)	(17.19)	(22.71)					
NegNoPun (10 obs)	Mean	65.64	72.61	6.23	71.01	80.26	8.64	0.2322	0.4922	0.8458		
Standard	d Deviation	(15.83)	(18.69)	(17.95)	(26.13)	(33.11)	(32.59)					
NegChat (10 obs)	Mean	98.84	90.69	-11.14	76.66	73.82	0.36	0.0098	0.0274	0.0040		
Standard	d Deviation	(43.25)	(33.19)	(12.18)	(33.28)	(29.41)	(8.70)					
<i>p-value:</i> * NegPun=NegNoPun		0.1053	0.9439	0.0112	0.2050	0.8880	0.0183					
<i>p-value:</i> * NegNoPun=NegChat		0.0288	0.2798	0.0052	0.6842	0.6842	0.0524					
p-value:* NegPun=NegChat		0.2908	0.2050	0.5261	0.3240	0.7782	0.3964					

* Wilcoxon Mann Whitney ranksum test ** Wilcoxon signed rank test

Session location	Market ID	Range of Neg/chat periods	No. of Chat periods	No. of periods chat used	First period chat used	Last period chat used	Capacity discussed?	Agreed- upon capacity mean (stddv)	Actual p/p capacity mean (stddv)	Summary of Chat content
UHM	701	25-38	12	12	25	38	yes	101.25	85.21	Tried to implement a rotation shceme that only
								(22.48)	(29.48)	worked in the last 2 periods
UHM	702	25-38	12	12	25	38	yes	112.27	101.25	Chose too high a capacity of 120 per person, only
								(15.71)	(21.33)	lowered capacity in the last 2 periods
UHM	703	25-38	12	5	26	35	yes	63.75	60.04	First time chat was used (period 26), agreed on a
								(11.51)	(4.92)	low capacity of 60
UHM	704	25-38	12	0	n/a	n/a	n/a	158.00	137.63	Chat was not used, capacity set too high
								(58.08)	(24.90)	
UHM	705	25-38	12	12	25	38	no	50.60	55.71	Did not discuss capacity or price, but still set low
								(34.57)	(45.22)	capacity
UHM	801	25-39	15	6	26	37	yes	60.00	57.27	Agreed on capacity of 60 in period 27; later used
								(0.00)	(8.62)	chat to confirm that this level worked well
UHM	802	25-39	15	0	n/a	n/a	n/a	57.33	69.97	No chat, noisy capacity negotiations with frequent
								(15.45)	(9.38)	deviations
UAA	1301	25-39	15	2	26	34	yes	130.50	114.27	Only used chat in 2 periods. Capacity set was
							-	(68.72)	(30.13)	highly variable and too high
UAA	1302	25-39	15	2	25	30	yes	53.33	52.10	Negotiated effectively without chat. Used chat to
								(10.47)	(10.60)	restate capacity proposals in two periods only.
UAA	1303	25-39	15	4	25	34	yes	84.00	81.13	Did not use chat much. Agreed on capacity of 50
							-	(55.27)	(55.49)	only in period 34.

 TABLE 6: Summary of Capacity Negotiations in Markets with Free-Style Chat

*In market 701, specific capacity was not agreed upon in 4 negotiations periods

			Be	efore Shock						After Shock				
market ID	capa- city asym- tote	Std. Err.	p-value: Cap=132 (Monop)	p-value: Cap=176 (Cournot)	p-value: Cap=264 (CE)	Classifi- cation	capa- city asym- tote		p-value: Cap=108 (Monop)	p-value: Cap=144 (Cournot)	p-value: Cap=216 (CE)	Classifi- cation	p-value: before= =after	Direc- tion of change
NoNeg	NoPun tr	eatmen	t											
101	240.58	10.93	0.0000	0.0000	0.0321	b/w CE,Cour	192.51	14.33	0.0000	0.0007	0.1011	CE	0.0071	down
102	237.13	9.35	0.0000	0.0000	0.0040	b/w CE,Cour	235.16	12.08	0.0000	0.0000	0.1128	CE	0.8976	same
401	194.18	15.46	0.0001	0.2398	0.0000	Cournot	149.14	18.30	0.0246	0.7789	0.0003	Cournot	0.0638	same
402	250.85	6.81	0.0000	0.0000	0.0534	CE	170.42	8.18	0.0000	0.0012	0.0000	b/w CE,Cour	0.0000	down
403	138.97	3.85	0.0701	0.0000	0.0000	Monop	108.68	4.64	0.8831	0.0000	0.0000	Monop	0.0000	down
404	277.09	15.48	0.0000	0.0000	0.3978	CE	179.68	17.94	0.0001	0.0467	0.0429	b/w CE,Cour	0.0001	down
1201	292.07	22.13	0.0000	0.0000	0.2046	CE	142.83	27.35	0.2028	0.9660	0.0075	Cournot	0.0000	down
1202	311.37	9.24	0.0000	0.0000	0.0000	above CE	178.39	11.57	0.0000	0.0030	0.0012	b/w CE,Cour	0.0000	down
1203	178.66	6.15	0.0000	0.6657	0.0000	Cournot	155.56	7.54	0.0000	0.1251	0.0000	Cournot	0.0196	down
1204	186.56	7.63	0.0000	0.1666	0.0000	Cournot	165.66	9.51	0.0000	0.0227	0.0000	b/w CE,Cour	0.0890	same
NegNol	Pun treat	ment												
601	275.14	21.20	0.0000	0.0000	0.5995	CE	116.69	25.65	0.7347	0.2871	0.0001	Monop	0.0000	down
602	212.05	10.45	0.0000	0.0006	0.0000	b/w CE,Cour	161.95	13.02		0.1680		Cournot	0.0029	down
603	195.51	7.93	0.0000	0.0139	0.0000	b/w CE,Cour	105.16	10.00	0.7766	0.0001	0.0000	Monop	0.0000	down
604	297.98	32.05	0.0000	0.0001	0.2890	CE	309.24	40.03	0.0000	0.0000	0.0199	above CE	0.8272	same
901	202.05	7.70	0.0000	0.0007	0.0000	b/w CE,Cour	107.00	9.68	0.9176	0.0001	0.0000	Monop	0.0000	down
902	244.14	16.81	0.0000	0.0001	0.2375	CE	241.57	21.18	0.0000	0.0000	0.2273	CE	0.9240	same
1101	330.54	27.24	0.0000	0.0000	0.0146	above CE	166.87	33.61	0.0798	0.4962	0.1438	Cournot	0.0002	down
1102	261.13	21.78	0.0000	0.0001	0.8952	CE	138.64	27.49	0.2650	0.8456	0.0049	Cournot	0.0004	down
1103	188.69	86.19	0.5107	0.8829	0.3822	Cournot	89.09	105.88	0.8582	0.6040	0.2307	Monop	0.4729	same
1104	224.28	4.05	0.0000	0.0000	0.0000	b/w CE,Cour	181.22	5.09	0.0000	0.0000	0.0000	b/w CE,Cour	0.0000	down

TABLE 7: Capacity Asymptotes Before and After the Shock

			Be	efore Shock						After Shock				
market	capa- city asym-	Std.	p-value: Cap=132	p-value: Cap=176	Cap=264	Classifi- cation	capa- city asym-		p-value: Cap=108	p-value: Cap=144	p-value: Cap=216	Classifi- cation	p-value: before=	tion of
ID	tote	Err.	(Monop)	(Cournot)	(CE)		tote	Err.	(Monop)	(Cournot)	(CE)		=after	change
	ı treatme													
201	365.45	13.90	0.0000	0.0000	0.0000	above CE	101.85	17.34	0.7227	0.0151	0.0000	Monop	0.0000	down
202	174.25	4.17	0.0000	0.6754	0.0000	Cournot	180.34	5.08	0.0000	0.0000	0.0000	b/w CE,Cour	0.3635	same
301	284.63	11.34	0.0000	0.0000	0.0689	CE	201.56	14.27	0.0000	0.0001	0.3115	CE	0.0000	down
302	205.55	14.68	0.0000	0.0441	0.0001	b/w CE,Cour	156.51	18.41	0.0084	0.4967	0.0012	Cournot	0.0377	down
303	201.81	7.25	0.0000	0.0004	0.0000	b/w CE,Cour	196.08	9.15	0.0000	0.0000	0.0295	b/w CE,Cour		same
501	343.80	16.40	0.0000	0.0000	0.0000	above CE	106.05	20.06	0.9225	0.0585	0.0000	Monop	0.0000	down
502	178.91	9.39	0.0000	0.7564	0.0000	Cournot	149.09	11.82	0.0005	0.6670	0.0000	Cournot	0.0476	down
503	188.43	6.09	0.0000	0.0414	0.0000	b/w CE,Cour	114.44	7.57	0.3952	0.0001	0.0000	Monop	0.0000	down
1001	200.95	6.81	0.0000	0.0002	0.0000	b/w CE,Cour	159.09	8.58	0.0000	0.0788	0.0000	Cournot	0.0001	down
1002	169.50	8.30	0.0000	0.4336	0.0000	Cournot	112.86	10.45	0.6417	0.0029	0.0000	Monop	0.0000	down
1003	188.40	8.84	0.0000	0.1609	0.0000	Cournot	93.32	10.93	0.1792	0.0000	0.0000	Monop	0.0000	down
NegCha	ut treatme	ent												
701	258.61	18.57	0.0000	0.0000	0.7717	CE	157.57	26.81	0.0644	0.6126	0.0293	Cournot	0.0021	down
702	325.95	16.78	0.0000	0.0000	0.0002	above CE	194.36	24.48	0.0004	0.0396	0.3768	CE	0.0000	down
703	149.95	5.35	0.0008	0.0000	0.0000	b/w Cour,Mon	114.03	7.23	0.4045	0.0000	0.0000	Monop	0.0001	down
704	301.41	18.67	0.0000	0.0000	0.0451	above CE	257.12	26.85	0.0000	0.0000	0.1256	CE	0.1804	same
705	308.09	25.93	0.0000	0.0000	0.089	CE	84.91	36.94	0.5319	0.1097	0.0004	Monop	0.0000	down
801	217.28	8.21	0.0000	0.0000	0.0000	b/w CE,Cour	116.35	10.32	0.4181	0.0074	0.0000	Monop	0.0000	down
802	171.15	6.66	0.0000	0.466	0.0000	Cournot	137.48	8.03	0.0002	0.4174	0.0000	Cournot	0.0016	down
1301	277.04	16.61	0.0000	0.0000	0.4325	CE	221.24	20.99	0.0000	0.0002	0.8027	CE	0.0356	down
1302	175.44	14.27	0.0023	0.9688	0.0000	Cournot	87.59	17.76	0.2505	0.0015	0.0000	Monop	0.0001	down
1303	301.56	39.54	0.0000	0.0015	0.3421	CE	110.69	47.88	0.9552	0.4867	0.0279	Monop	0.0026	down

TABLE 7 (continued): Capacity Asymptotes Before and After the Shock

			В	efore Shock			After Shock							
	price		p-value:	p-value:	p-value:	Classifi-	price		p-value:	p-value:	p-value:	Classifi-	p-value:	Direc-
market	asymp-		price=43	price=32	price=10		asymp-	Std.	price=37	price=28	price=10		before=	tion of
ID	tote	Std. Err.	(Monop)	(Cournot)	(CE)	cation	tote	Err.	(Monop)	(Cournot)	(CE)	cation	=after	change
NoNeg	gNoPun	treatmen	ıt											
101	25.83	1.81	0.0000	0.0007	0.0000	b/w CE,Cour	21.54	2.35	0.0000	0.0061	0.0000	b/w CE,Cour	0.1492	same
102	19.72	0.96	0.0000	0.0000	0.0000	b/w CE,Cour	13.22	1.21	0.0000	0.0000	0.0078	b/w CE,Cour	0.0000	down
401	32.87	2.56	0.0001	0.7346	0.0000	Cournot	29.95	3.00	0.0186	0.5145	0.0000	Cournot	0.4679	same
402	23.36	0.89	0.0000	0.0000	0.0000	b/w CE,Cour	24.47	1.07	0.0000	0.0010	0.0000	b/w CE,Cour	0.4238	same
403	38.79	1.08	0.0001	0.0000	0.0000	b/w Cour,Mor	36.85	1.27	0.9075	0.0000	0.0000	Monop	0.2529	same
404	18.45	2.05	0.0000	0.0000	0.0000	b/w CE,Cour	21.72	2.37	0.0000	0.0081	0.0000	b/w CE,Cour	0.3045	same
1201	21.36	4.22	0.0000	0.0116	0.0071	b/w CE,Cour	29.48	5.05	0.1364	0.7696	0.0001	Cournot	0.2235	same
1202	14.35	1.44	0.0000	0.0000	0.0024	b/w CE,Cour	22.59	1.75	0.0000	0.0020	0.0000	b/w CE,Cour	0.0004	up
1203	27.17	0.82	0.0000	0.0000	0.0000	b/w CE,Cour	25.82	1.02	0.0000	0.0319	0.0000	b/w CE,Cour		same
1204	30.52	1.90	0.0000	0.4344	0.0000	Cournot	23.59	2.31	0.0000	0.0567	0.0000	Cournot	0.0231	down
NegNo	oPun tre	eatment												
601	19.51	1.12	0.0000	0.0000	0.0000	b/w CE,Cour	36.85	1.36	0.9135	0.0000	0.0000	Monop	0.0000	up
602	26.05	2.23	0.0000	0.0076	0.0000	b/w CE,Cour	25.49	2.77	0.0000	0.3637	0.0000	Cournot	0.8758	same
603	26.56	1.16	0.0000	0.0000	0.0000	b/w CE,Cour	37.61	1.47	0.6753	0.0000	0.0000	Monop	0.0000	up
604	22.39	2.67	0.0000	0.0003	0.0000	b/w CE,Cour	20.51	3.25	0.0000	0.0211	0.0012	b/w CE,Cour	0.6615	same
901	30.09	1.72	0.0000	0.2679	0.0000	Cournot	36.94	2.15	0.9774	0.0000	0.0000	Monop	0.0136	up
902	22.30	2.13	0.0000	0.0000	0.0000	b/w CE,Cour	19.71	2.61	0.0000	0.0015	0.0002	b/w CE,Cour	0.4486	same
1101	18.19	3.42	0.0000	0.0001	0.0165	b/w CE,Cour	22.52	4.42	0.0010	0.2146	0.0046	Cournot	0.4412	same
1102	20.18	1.86	0.0000	0.0000	0.0000	b/w CE,Cour	28.01	2.32	0.0001	0.9977	0.0000	Cournot	0.0091	up
1103	30.37	8.58	0.1407	0.8488	0.0176	Cournot	40.81	10.63	0.7200	0.2281	0.0038	Monop	0.4506	same
1104	21.81	0.87	0.0000	0.0000	0.0000	b/w CE,Cour	19.87	1.08	0.0000	0.0000	0.0000	b/w CE,Cour	0.1636	same

 TABLE 8: Price Asymptotes Before and After the Shock

	Before Shock					After Shock								
market ID	price asymp- tote		p-value: price=43 (Monop)	p-value: price=32 (Cournot)	p-value: price=10 (CE)	Classifi- cation	price asymp- tote		p-value: price=37 (Monop)	p-value: price=28 (Cournot)	p-value: price=10 (CE)	Classifi- cation	p-value: before= =after	Direc- tion of change
NegPun treatment														
201	17.08	1.14	0.0000	0.0000	0.0000	b/w CE,Cour	38.15	1.41	0.4142	0.0000	0.0000	Monop	0.0000	up
202	35.19	0.86	0.0000	0.0002	0.0000	b/w Cour,Mor	21.12	1.06	0.0000	0.0000	0.0000	b/w CE,Cour	0.0000	down
301	15.61	1.01	0.0000	0.0000	0.0000	b/w CE,Cour	14.61	1.28	0.0000	0.0000	0.0003	b/w CE,Cour	0.5371	same
302	31.13	2.42	0.0000	0.7176	0.0000	Cournot	25.17	3.02	0.0001	0.3481	0.0000	Cournot	0.1254	same
303	27.73	1.31	0.0000	0.0011	0.0000	b/w CE,Cour	19.43	1.64	0.0000	0.0000	0.0000	b/w CE,Cour	0.0001	down
501	15.37	2.12	0.0000	0.0000	0.0113	b/w CE,Cour	38.32	2.50	0.5956	0.0000	0.0000	Monop	0.0000	up
502	33.40	1.96	0.0000	0.4765	0.0000	Cournot	27.49	2.45	0.0001	0.8334	0.0000	Cournot	0.0611	same
503	30.69	1.40	0.0000	0.3511	0.0000	Cournot	34.85	1.75	0.2199	0.0001	0.0000	Monop	0.0656	same
1001	23.59	0.75	0.0000	0.0000	0.0000	b/w CE,Cour	26.07	0.93	0.0000	0.0370	0.0000	b/w CE,Cour	0.0406	up
1002	36.11	2.16	0.0014	0.0569	0.0000	Cournot	34.22	2.72	0.3078	0.0223	0.0000	Cournot	0.5852	same
1003	29.64		0.0000	0.1110	0.0000	Cournot	40.95	1.84	0.0314	0.0000	0.0000	Monop	0.0000	up
NegChat treatment														
701	25.08	2.89	0.0000	0.0168	0.0000	b/w CE,Cour	31.12	4.20	0.1617	0.4570	0.0000	Cournot	0.2396	same
702	17.60	2.34	0.0000	0.0000	0.0011	b/w CE,Cour	30.60	3.23	0.0476	0.4207	0.0000	Cournot	0.0014	up
703	37.35	1.27	0.0000	0.0000	0.0000	b/w Cour,Mor	34.60	1.59	0.1322	0.0000	0.0000	Monop	0.1470	same
704	14.90	1.17	0.0000	0.0000	0.0000	b/w CE,Cour	11.71	1.68	0.0000	0.0000	0.3086	CE	0.1239	same
705	17.95	2.91	0.0000	0.0000	0.0063	b/w CE,Cour	47.18	4.24	0.0162	0.0000	0.0000	Monop	0.0000	up
801	24.93	1.31	0.0000	0.0000	0.0000	b/w CE,Cour	34.65	1.64	0.1525	0.0001	0.0000	Monop	0.0000	up
802	35.32	1.77	0.0000	0.0607	0.0000	Cournot	29.58	2.14	0.0005	0.4582	0.0000	Cournot	0.0425	down
1301	18.15	1.46	0.0000	0.0000	0.0000	b/w CE,Cour	19.67	1.84	0.0000	0.0000	0.0000	b/w CE,Cour	0.5152	same
1302	37.74	2.29	0.0214	0.0121	0.0000	b/w Cour,Mor	41.71	2.82	0.0947	0.0000	0.0000	Monop	0.2802	same
1303	15.48	2.60	0.0000	0.0000	0.0351	b/w CE,Cour	36.41	3.15	0.8519	0.0076	0.0000	Monop	0.0000	up

 TABLE 8 (continued): Price Asymptotes Before and After the Shock

Table 9: Treatment effects: Cross-sectional time-series generalized least squares regressions

	Average trading price			Ма	arket Capa	city	Average seller profit			
	Coef.	Std. Err.	P>z	Coef.	Std. Err.	P>z	Coef.	Std. Err.	P>z	
Constant	24.83	(0.61)	0.0000	240.41	(5.16)	0.0000	1041.64	(52.78)	0.0000	
NegNoPun	-0.38	(1.16)	0.7410	13.25	(10.05)	0.1870	-62.11	(91.56)	0.4980	
NegPun	4.96	(0.98)	0.0000	-44.06	(6.92)	0.0000	423.49	(74.01)	0.0000	
NegChat	1.41	(1.36)	0.2980	-3.19	(9.94)	0.7480	-35.10	(103.24)	0.7340	
Shock	-3.24	(0.96)	0.0010	-25.25	(7.97)	0.0020	-495.21	(93.77)	0.0000	
Shock, NegNoPun	-2.52	(1.90)	0.1840	8.37	(16.21)	0.6050	-192.27	(163.16)	0.2390	
Shock, NegPun	-1.56	(1.54)	0.3110	14.41	(11.20)	0.1980	-159.85	(132.47)	0.2280	
Shock, NegChat	-1.60	(1.80)	0.3720	6.68	(13.16)	0.6120	-299.88	(149.73)	0.0450	
After shock	-1.54	(0.98)	0.1160	-49.96	(8.19)	0.0000	-231.07	(89.40)	0.0100	
After shock, NegNoPun	5.44	(1.90)	0.0040	-45.37	(16.35)	0.0060	192.20	(155.87)	0.2180	
After shock, NegPun	1.98	(1.58)	0.2080	5.71	(11.25)	0.6120	-197.23	(126.09)	0.1180	
After shock, NegChat	-0.54	(1.99)	0.7850	19.69	(14.58)	0.1770	-343.60	(158.32)	0.0300	
Late after shock, NoNeg	1.41	(0.97)	0.1460	-15.24	(8.04)	0.0580	165.90	(92.38)	0.0730	
Late after shock,NegNoPu	-2.53	(1.64)	0.1220	13.80	(14.13)	0.3290	-173.88	(131.76)	0.1870	
Late after shock,NegPun	-0.43	(1.22)	0.7250	-2.89	(7.86)	0.7130	87.70	(92.18)	0.3410	
Late after shock,NegChat	4.73	(1.58)	0.0030	-26.77	(10.93)	0.0140	310.47	(121.31)	0.0100	
Number of obs	1578*			1580			1580			
Log likelihood	-4927			-8264			-11888			

Heteroskedastic panels; panel-specific autocorrepattion AR(1) *Trading price observations are missing for markets with zero sales (two cases)

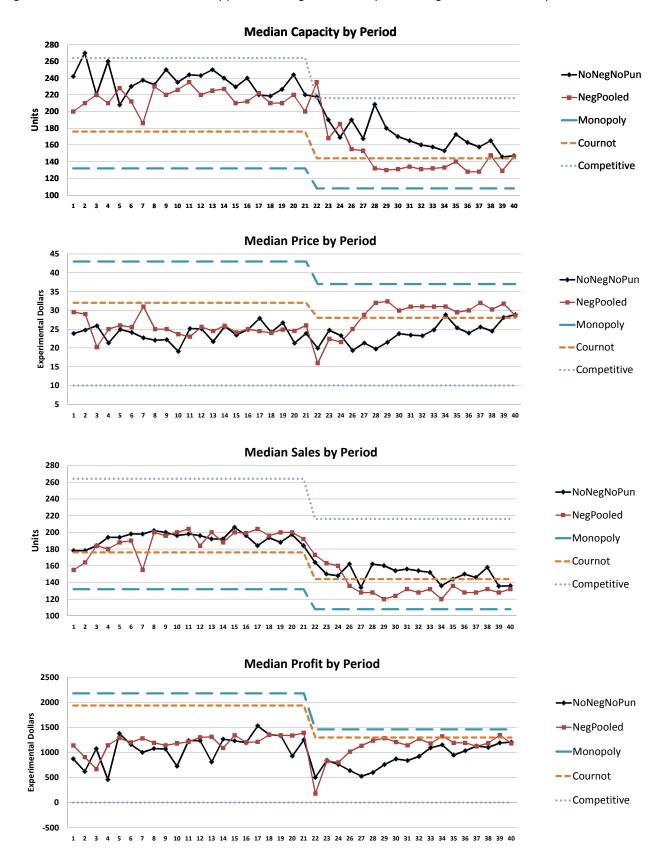
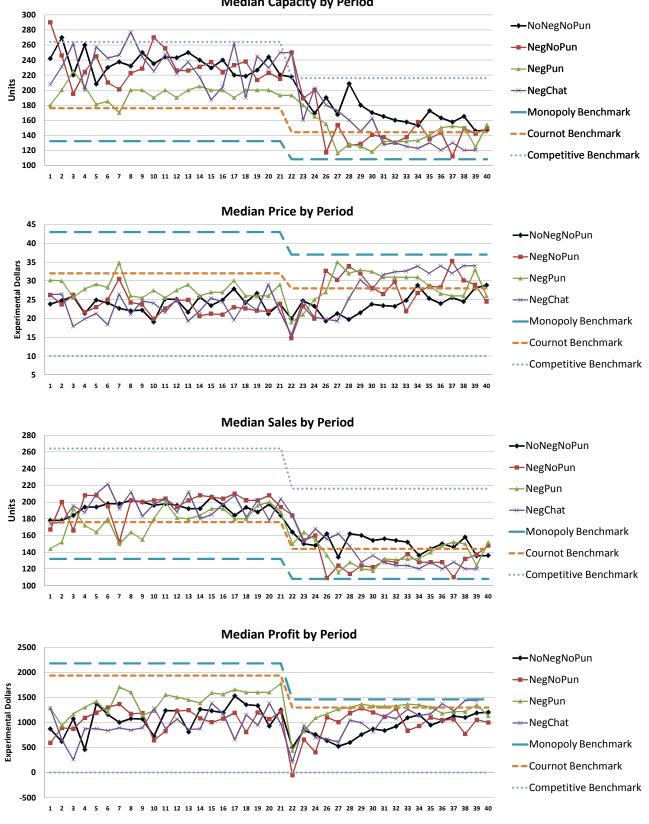



Figure 1: Median market characteristics by period: No Negotiations compared to Negotiation treatments pooled

Median Capacity by Period

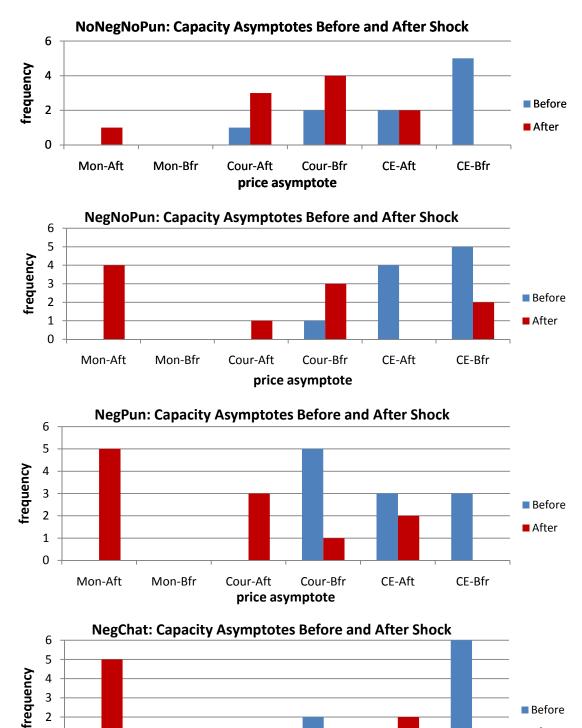


Figure 3: Distribution of Capacity Asymptotes Before and After Shock

*Theoretical predictions for before and after the shock are displayed side by side. Capacity asymptote ranges, in physical units, are as follows. "CE (Competitive Equilibrium)-Before:" above 240; "CE (Competitive Equilibrium)-After:" (192,240]; "Cournot-Before:" (160,192]; "Cournot-After:" (138,160]; "Monopoly-Before:" (120, 138]; "Monopoly-After:" below 120.

price asymptote

Cour-Bfr

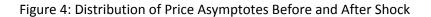
CE-Aft

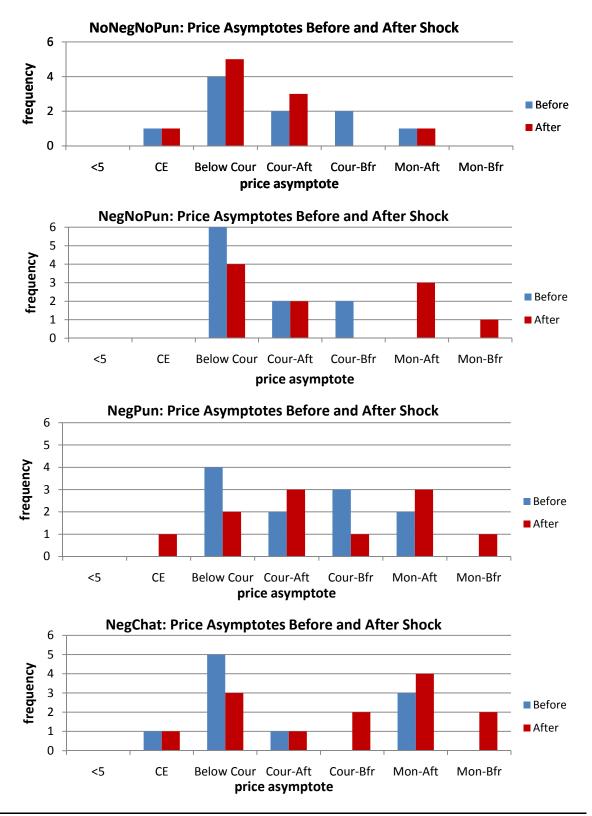
Cour-Aft

Before

After

CE-Bfr


3


2

1 0

Mon-Aft

Mon-Bfr

*Theoretical predictions for before and after the shock are displayed side by side. Price asymptote ranges, in experimental dollars, are as follows. "CE (Competitive Equilibrium):" below 15; "Below Cournot:" (15,25]; "Cournot-After:" (25,30]; "Cournot-Before:" (30,34.5]; "Monopoly-After:" (34.5, 40]; "Monopoly-Before:" above 40 exp. dollars.

Appendix A

Experiment Instructions¹

Introduction

You are about to participate in an experiment in the economics of market decision making in which you will earn money based on the decisions you make. All earnings you make are yours to keep and will be paid to you **IN CASH** at the end of the experiment.

During the experiment all units of account will be in experimental dollars. Upon concluding the experiment, you will paid **1** dollar in cash for every **1500** experimental dollars you earn in the experiment. Your cash earnings plus a show up payment of **5** dollars will be paid to you in private.

You will begin the experiment with 7500 experimental dollars. This is NOT part of your showup payment.

Note your Current Earnings in the box at the top of the screen.

Do not communicate with the other participants except according to the specific rules of the experiment. If you have a question, feel free to raise your hand. An experimenter will come over to you and answer your question in private.

If you have any questions at this point, please raise your hand.

Click **Continue** when you are ready go on.

Markets and Trading Periods

In this experiment you are going to participate in a market in which you will be selling units of a fictitious good. At the beginning of the experiment, you will be assigned to a market with another participant. You will not be told which of the other participants is in your market. What happens in your market has no effect on the participants in other markets and vice versa.

You will remain in the same market with the same other seller until the end of the experimental session. This does not include trial periods. In trial periods, you may be matched with another individual.

In this experiment, you will be referred to by your seller ID number. Your seller number will be assigned to you by the computer and displayed to you in the upper left hand corner.

¹ Instructions were provided to the students in an interactive format via their computer terminals.

Production and trading in your market will occur in a sequence of independent market days or *periods*. The period number is also given in the upper left hand corner of the screen.

Unless you have questions, click **Continue** to go on.

Decisions: Capacities and Prices

Your earnings in each market period will depend on your and the other seller's *capacity* and *price* choices. This is how it works:

At the beginning of each period, you will be first asked to choose your capacity, which is the number of units you will produce. You will have the opportunity to change your capacity every period.

Both you and the other seller in your market will choose your capacities at the same time, without knowing the capacity chosen by the other.

As a seller, you will pay the cost of the units you produce (your capacity choice) <u>regardless of</u> <u>how many units you actually sell.</u> Your unit cost is **10 experimental dollars**, as given in the box at the top of the screen.

For example, if your produce 60 units, your total cost will be 60 * 10 = 600 experimental dollars.

Your *endowment* is a flat payment you receive each period regardless of your choices. The amount of the endowment is displayed under the unit cost.

Example 1: (all numbers in the examples are hypothetical)

As an example, enter 60 for your capacity. Click **OK** when you are done.

After all sellers make their capacity choices, the computer will display the sellers' capacity choices in your market, as well as the total market capacity. To illustrate, the computer shows that your capacity is 60, while other seller's capacity is 80, resulting in the total market capacity of 60 + 80 = 140 units.

After capacities are displayed, you (and other sellers in your market) will be asked to choose the price that you want to sell your goods for. You will choose your price without knowing the price chosen by the other seller.

Computer Demand and Sales

After the capacities and prices are chosen, the computer will buy goods from you and the other seller in your market. For each price, there is a maximum number of units that the computer will

buy at this price, called *Computer Demand*. <u>The lower the price, the higher the number of goods</u> <u>demanded</u>.

The exact number of units the computer will demand (buy) at any price is given by the following expression:

Units Bought = 304 - (4 * Price)

You have a paper chart showing the computer demand at any price. This expression may change at any time. If it does, you will be informed.

The computer will always buy first from the seller offering the lowest price. It will buy as many units as it demands at this price, **or** until it exhausts the low price seller's capacity. If the computer can still buy more units after buying all the units produced by the first seller, it will then buy from the seller with the higher price until it satisfies all the demand at the higher price, **or** until it exhausts all the capacity of the high price seller.

To continue with our example, enter a price of 50 and click **OK** to continue.

Suppose the other seller charged a price of 55. Because your price (50) is lower, the computer will buy your units first.

At a price of 50, the computer will buy all 60 units that you've produced. The total number the computer would be willing to buy at this price would be 304 - (4 * 50) = 104 units. You can confirm this by looking at the demand chart provided to you. But since you've only produced 60, that is all that the computer purchases.

After buying all of your units, the computer would then consider how many more units to purchase at the higher price of 55 being offered by the other seller. At this price, the computer demands 304 - (4 * 55) = 84 units. However, because the computer has already purchased 60 units from you, it will only purchase 84 - 60 = 24 units from the other seller.

Your earnings are equal to the difference between your revenue from sales and the cost of all the units you have produced, plus your endowment. That is:

YOUR EARNINGS = YOUR REVENUE - TOTAL COST + ENDOWMENT

Your revenue is equal to the price you charge times the number of units you sell at this price:

YOUR REVENUE = YOUR PRICE * QUANTITY SOLD

Your total cost is equal to per unit cost of production times the number of unit that you produce (your capacity):

YOUR TOTAL COST = PER UNIT COST * YOUR CAPACITY

In our example, if you produce 60 units at the unit cost of 10, and you sell all 60 units at the price of 50, then your revenue, cost and earnings are:

YOUR REVENUE = (60 * 50) = 3000YOUR TOTAL COST = 60 * 10 = 600YOUR EARNINGS = 3000 - 600 + 50 = 2450

When you understand these results, click **OK** to continue.

Example 2: (all numbers in the examples are hypothetical)

Alternatively, imagine the following situation:

Your Capacity: 200 Other's Capacity: 80

Your Price: 15 Other's Price: 15

If both sellers charge the same price, then the computer will buy an equal number of units from both buyers to the point where the computer's demand is satisfied. If the lower capacity seller sells every unit he or she produced and the computer still demands more, the computer will buy those units from the higher capacity seller until it has all the additional units it demands at the charged price **or** until they have purchased all of the additional units offered by the higher production seller.

In the above example, the computer demand at the price of 15 is 304 - (4 * 15) = 244 units. Since both sellers are charging the same price, the computer will try to buy half of the demand, which is 244 / 2 = 122 units from each seller. However, because the other seller's capacity is set to only 80 units, the computer will buy all 80 units from this seller, and the remaining 244 - 80 = 164 units from you. Therefore, your earnings in this period will be:

Earnings = (Price * Sales) + (Unit Cost * Capacity) + Endowment

= (15 * 164) - (10 * 200) + 50 = 2460 - 2000 + 50 = 510

Click OK to continue.

Example 3: (all numbers in the examples are hypothetical)

Now suppose the capacity and price choices are as given below: \par \line \tab

Your Capacity: 80

Other's Capacity: 100

Your Price: 50 Other's Price: 20

In this example, the other seller is the low-price seller, so the computer will buy from that seller first. The computer demand at the low price of 20 is 304 - (4 * 20) = 224 units, but since the other seller has only produced 100 units, the computer will buy all 100 units from this seller first.

To check whether the computer will buy any from you, note that at the price of 50 that you've charged, the computer demand is 304 - (4 * 50) = 104 units. Since the computer has already bought 100 units from the other seller, it will buy 104 - 100 = 4 units from you. Therefore, your earnings in this period will be:

Earnings = (Price * Sales) - (Unit Cost * Capacity) + Endowment =

= (50 * 4) - (10 * 80) + 50 = 200 - 800 + 50 = -550

Please click **OK** to continue.

Calculator

In order to help you determine the potential profits in light of the decisions of you and the other seller, you have access to the *Calculator* at all times. This allows you to explore hypothetical situations before actually making your decisions.

You may want to try it out now.

Example #4:

Your Capacity: 80 Other's Capacity: 50 Your Price: 8 Other's Price: 30

Example #5

Your Capacity: 120 Other's Capacity: 50 Your Price: 46 Other's Price: 38

This process will continue for a number of periods. A history window at the bottom of your screen will allow you to keep track of capacity choices, price choices, and the resulting profits from all of the previous periods. You may scroll up and down the history window.

The next period will be a trial period. It will not count towards your earnings. After you feel satisfied you understand the experiment, click **Continue** to finish the instructions.

[The following instructions were presented to subjects in period 25 in the capacity negotiation treatments.]

Capacity Coordination

In this portion of the experiment, you and the other seller in your market will have the opportunity to coordinate your capacities prior to setting them. Each of you will have the ability to propose a **CAPACITY FOR EACH SELLER** in your market. For example, if you propose a capacity of 150, it means that the total proposed capacity in your market is 2 sellers * 150 units each = 300 units. You can change this proposal as many times as you like during this coordination stage.

When you propose a capacity setting, the other seller sees your proposal and vice versa. During this stage, you can change your proposal as many times as you like. When you change your proposal, the other seller sees that change in real time.

Try entering a number of capacity proposals now to see how it works.

At any point during this stage, you or the other seller can end the stage by clicking **Accept Proposal.** This accepts the most recent capacity proposal of the other seller and becomes a capacity agreement between the two of you. Be careful when you choose to accept a proposal. It can be changed at any time up until the moment you click the button.

If the time elapses in this stage without either seller clicking **Accept Proposal**, there is no capacity agreement for the period.

Feel free to coordinate a capacity agreement now. The next stage starts after you or the other seller in your market accepts a proposal, or time elapses.

Please note that your decisions in this period will not affect your earnings. This period is for instruction alone.

Decisions

After you agree on the capacity, the agreed capacity will be shown as in the box to the right.

The experiment will then proceed as before. You will be asked to enter your capacity choice, and then your price. Note that in your capacity choice **YOU ARE NOT CONSTRAINED TO ADHERE TO THE CAPACITY AGREEMENT**. You may enter whatever capacity you wish.

[The following text only appears in the instructions for the punishment treatments]

However, if you choose to exceed the agreed capacity, *you will be liable to pay a penalty of 7 experimental dollars per unit of capacity you produce over the agreed amount.* This penalty will be added to the earnings of the other seller in your market.

Likewise, if the other seller exceeds the agreed capacity, they will pay a penalty to you. If both of you exceed the agreed capacity, the penalties will offset with the actual transfer of money depending on the relative sizes of the excess capacities.

[end condition]

Enter your capacity choice now.

Then enter a price.

The results screen will then indicate your price, sales and costs, as well as whether you have exceeded the agreed upon capacity, and will calculate your resulting earnings.

[The following text only appears in the instructions for the punishment treatments]

Note that, in addition to your normal earnings, you may also receive and/or pay a penalty based on your capacity decisions relative to the agreed capacity.

If neither of you had exceeded the agreed capacity, neither of you would have to pay a penalty.

Also note that your calculator will **NOT** include penalties in its calculation of profit.

[end condition]

Please note that, in future rounds, you will be matched with the same other seller as you were in previous rounds. These future rounds count toward your earnings.

If you are ready to proceed, click **OK**.

Quiz

EXERCISES

Use the calculator to answer the following questions.

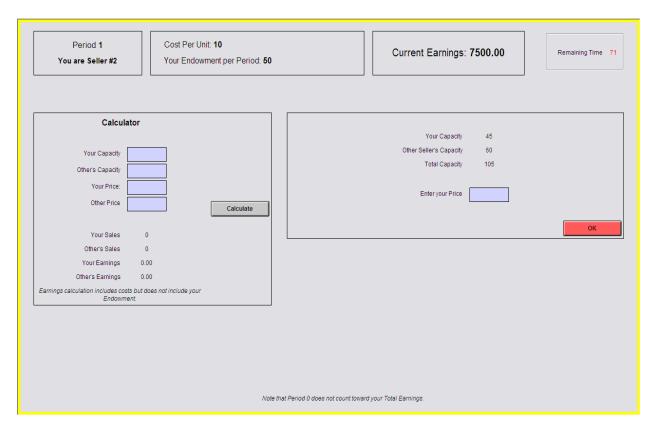
Suppose yours and the other seller's capacity and price choices are as suggested in Example 4:

Your capacity: 80 Other's Capacity: 50 Your price: 8 Other's price: 30

1.1 Will the computer buy from you or the other seller first? (Check one) _____ you; _____ other seller

1.2 What are your sales? _____ Do you sell all your capacity? _____ yes; _____ no

- 1.3 What are your earnings? _____ Do you earn or lose money? _____earn; _____ lose
- 1.4 Suppose the capacity choices and the other seller's price stay unchanged. Suppose you could change the price, calculate how your earnings for each of the following price choices:


Price:	\$5experimental;	Your Earnings:
Price:	<u>10 experimental;</u>	Your Earnings:
Price:	20 experimental;	Your Earnings:
Price:	<u>30 experimental;</u>	Your Earnings:
Price:	40 experimental;	Your Earnings:
Price:	50 experimental;	Your Earnings:
Price:	100 experimental;	Your Earnings:

- 1.5 From Question 1.4 above, what would be <u>the lowest</u> price that would allow you not to lose money?
- 1.6 From Question 1.4 above, at which price will you earn the most money?

The price is: _____ Your earnings will be equal to _____

1.7 Suppose now that you choose the price that allows you to earn most money, as in question 1.6 above. (Suppose, as before, that the capacity and price choices of the other sellers stay unchanged.) Given this price, how can you change your capacity to increase your earnings? Price: _____ New capacity: _____ Your earnings: ______

Are there any questions?

Appendix B: Subject decision screen: price-setting stage