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Abstract

We derive causal property value impacts of the coal-to-gas fuel switching conversion implemented

by several power plants in the United States. We use an extensive dataset of property trans-

actions around the country and adopt several spatial difference-in-difference approaches that

use records of residential property transactions of homes with wind exposure and proximity

to the switching plants before and after the switch. A triple-differences control function

estimator using coal-fired plants that did not innovate strengthens these estimations. Our results

indicate that the shutdown of coal-fired generators increases property values of downwind homes

by 15% in the immediate vicinity of fuel-switching plants (≤ 1.2mi), which brings to light

the strong disamenity effect of coal-fired power plants. Our back-of-the-envelope calculations

suggest that the fuel switching led to a $1.78 billion-increase in property values around the country.
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1. Introduction

The recent increase in the natural gas supply due to the advance in hydraulic fracking

led power companies in the United States to increase their share of natural gas-fired power

generation in lieu of coal-fired generation. As natural gas burns cleaner than coal, this

coal-to-gas conversion led to an improvement of environmental quality at both a global

and a local scale, through reduction in greenhouse gas emissions and lower discharge of

local airborne pollutants, respectively (Linn et al., 2014; Holland et al., 2018; Linn and

Muehlenbachs, 2018; Johnsen et al., 2019).1 To the extent that households benefit from

cleaner air through the possibility of better health, clearer views, and more enjoyment from

outdoor activities (Grainger, 2012), the use of a cleaner fuel is expected to be capitalized into

the price of residential properties that benefit from the air quality improvement increasing

thus households’ welfare.

In this paper, we shed light on the previous idea by studying the causal impact that the

coal-to-gas fuel switching process carried out by the U.S. power sector had on property values

of residential homes located in the immediate vicinity of the switching facilities.2 To carry

out our goal, we use a hedonic price model to estimate households’ willingness to pay for a

local air quality improvement. We identify several power stations that, between 2009 and

2018, switched their primary fuel from coal to natural gas by incorporating new generation

units into their plants. Later, we match them to an extensive dataset of residential property

transactions using the stations’ geographical location. Our final dataset includes 10 coal-

to-gas power plants and more than 300,000 properties throughout the country, which gives

us enough variation to control for potential spatial macroeconomic effects affecting housing

prices (Muehlenbachs et al., 2015).

For identification, we exploit the temporal and regional variation in the timing of the

fuel switching. In our baseline specification, we estimate a hedonic price model in differences

that compares sale prices between properties that are located near or downwind from the

switching plants, and properties that are located farther away or upwind from these facilities,

before and after the switching. To account for the broad set of negative externalities from

the coal-fired generation (Davis, 2011) and separate out the effect of air pollution from

1Emissions leakages from transmission and distribution pipelines could undermine some of the benefits
(in terms of reduced emissions) that burning natural gas has on the environment. The drilling and extraction
of natural gas from wells, and its transportation in pipelines results in leakage of methane, a greenhouse
gas that is roughly 30 times stronger than CO2 at trapping heat in the atmosphere. Evidence shows that
this leakage can reach up to 9% of this fuel total life-cycle emission (Tollefson, 2013). Notwithstanding,
life-cycle greenhouse gas emissions of natural gas have been shown to be lower relative to the diesel and coal
combustion (Jaramillo et al., 2007; Burnham et al., 2011).

2We use the terms “coal-to-gas”, “fuel switching” and “treated” power plants interchangeably throughout
the paper.
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other disamenity effects, we estimate additional specifications using homes in the vicinity of

coal-fired power plants that did not switch as an additional control set. We enhance these

estimations with two triple-differences designs that combine the two previous sources of

variation. Since there could be omitted variables common to neighborhoods that host coal-

to-gas-fired plants, we estimate our main equations with an instrumental variable approach

that uses a control function estimator. Through all the specifications, we distinguish between

the time of shutdown of the first coal-fired generators and the startup of new gas-fired units.

Our empirical exercise provides strong indications of a positive welfare impact of the coal-

to-gas power plant conversion process in the immediate vicinity of these switching stations.

Findings from our main and preferred double-differences specification using wind exposure

suggest that shutting down coal-fired generators increases the value of downwind properties

by roughly 15 percent in the immediate vicinity of these plants (≤ 1.2mi or 2km). This effect

increases in magnitude when properties in the neighborhood of coal-fired-non-switching fa-

cilities are used as controls. Results from our main triple-differences estimator that combines

these two differentials indicate a 37 percent price increase, on average, for residential homes

within 1.2 miles of the switching plants after the shutdown of coal-fired generators and rel-

ative to homes around coal-fired-non-switching plants. These effects increase in magnitude

after startup of gas-fired generators, which is in line with many of these fuel-switching plants

shutting down additional generators and expanding their capacity over time, which adds an

extra boost to the local economy. Our back-of-the-envelope calculations using our preferred

and conservative estimation suggest that the coal-to-gas fuel switching led to a $1.78-billion

property value gain in the immediate vicinity of the fuel-switching plants.

Our work makes several contributions to the existing literature. First, it adds to the

rich body of studies on the property value impacts of proximity to disamenities in gen-

eral (Kohlhase, 1991; Mendelsohn et al., 1992; Greenstone and Gallagher, 2008; Gamper-

Rabindran and Timmins, 2013; Kiel and McClain, 1995a,b), and power plants in particular

(Blomquist, 1974; Gamble and Downing, 1982; Davis, 2011; Hodge, 2011a; Deng et al., 2014;

Currie et al., 2015; Farah et al., 2019). Our contribution is to particularly study the case of

the coal-to-gas fuel conversion, filling in the gap on the spillover effects of technology inno-

vations in the electric sector on the residential housing market. In this conceptual sense, our

study is close to the work by Farah et al. (2019)) on the impact of the coal-switching on res-

idential properties in the Appalachian region. Yet, we expand Farah et al. (2019)’s analysis

to the entire country, providing a more comprehensive overview of the fuel switching phe-

nomenon in the United States. Additionally, our results are informative of the fuel switching

impact at the extensive margin, as we center the analysis around plants running with coal

at first and switching later to (new) gas-fired generators, instead of looking at the relative
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share in the use of these fuels. In doing so, we document property price capitalizations due

to the fuel-switching that come from a long-term innovation with lasting consequences on

the environment as opposed to a temporary effect. Finally, our work also expands on the

recent literature regarding the benefits that the increase in the natural gas supply has on

air quality (e.g. Linn et al. (2014); Linn and Muehlenbachs (2018); Johnsen et al. (2019)),

electricity prices (Linn et al., 2014; Linn and Muehlenbachs, 2018), as well as wage rates and

housing prices (Jacobsen, 2019). Our findings represent additional evidence on some of the

indirect non-market benefits of the energy boom in the U.S.

The remainder of this work proceeds as follows. Section 2 briefly discusses the analytical

framework, while Section 3 documents the data. Section 4 presents the empirical strategy

and Section 5 the main results. Section 6 concludes.

2. Analytical Framework

In this paper, we use the hedonic price model to elicit average marginal willingness-to-

pay measures for a nonmarginal improvement in local air quality due to the fuel switching.

Studies that apply hedonic price modeling to associate housing prices and quantities of

environmental quality date back to Ridker (1967) and Ridker and Henning (1967), under

the reasoning that the value of a house can be considered a function of its characteristics,

such as structural, neighborhood, and environmental characteristics (Freeman, 1979).3 This

section briefly describes the hedonic price method and its implications when evaluating a

local improvement in an environmental amenity. The model anticipates that housing prices

increase in response to an increase in environmental quality.

The hedonic price theory considers that an item h can be valued by a vector z of char-

acteristics (z1, z2, ..., zj), including local environmental quality. The price of house h can be

considered as the sum of each of its homogeneous attributes in a price function, Ph, described

as follows:

Ph(z) = P (z1, z2, ..., zj). (1)

This function Ph(z) is referred to as the hedonic price function and indicates the amount

that an individual must pay for a bundle with characteristics z. The partial derivative of

Ph(·) with respect to zj, ∂Ph(·)/∂zj, gives the marginal implicit price of characteristic zj.

Utility-maximizing individuals derive at the same time utility from housing item h. In the

housing market equilibrium arising from the interactions of buyers and sellers, individuals’

3For a more comprehensive review of hedonic price applications, see Mendelsohn and Olmstead (2009)
and Freeman III et al. (2014).
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marginal willingness to pay (WTP) for characteristic zj equals the marginal implicit price

of that characteristic.

Rosen (1974) distinguishes the price hedonic function Ph(z) from the bid function θi =

θ(M, zj, z−j, u
∗), which represents what an individual i is willing to pay for different values of

characteristic zj, holding income M , other characteristics z−j, and utility constant at a level

u∗. Heterogeneous individuals’ preferences and income lead to different bid functions, and

so to different chosen quantities of characteristic zj. The relationship between the hedonic

price function Ph(z), and the bid functions θ1 and θ2 for individuals 1 and 2, respectively,

for characteristic zj is depicted in Figure 1.

[INSERT FIGURE 1 ABOUT HERE]

Suppose zj is a measure of local environmental quality. Figure 1 shows that both bid

functions exhibit diminishing marginal willingness to pay for zj, and that given the hedonic

price function, individuals 1 and 2 choose levels of environmental quality where their marginal

WTP for zj equals the marginal implicit price determined by the hedonic price function at

z
′
j and z

′′
j , respectively. Given the market equilibrium, individuals’ utilities would be lower

at sites with higher or lower levels of environmental quality.

Now, consider that the coal-to-gas conversion process improves air quality in a neighbor-

hood from z
′
j to z

′′
j .4 From Figure 1, this non-marginal change is expected to increase the

price of house h. For individual 1, originally consuming z
′
j, the new price for environmental

quality exceeds her/his WTP for the air quality amenity. This individual can decide to

relocate to a place with lower air quality and restore the equilibrium, or to stay, in which

case she/he would be better off due to an increase in wealth. If the individual relocates,

the welfare effect of the nonmarginal change in zj comes from the gain to the new individ-

ual that locates in the neighborhood experiencing the amenity enhancement, represented by

her WTP for an air quality improvement. If the individual stays, the welfare effect is the

change in wealth experienced by the homeowner individual. The implied change in total

welfare from an air quality improvement, therefore, can be obtained by multiplying the ob-

served equilibrium price differential due to the coal-to-gas conversion by the number of local

residential housing units affected by this conversion.

4To establish welfare effects of this non-marginal change in air quality from z
′′

j to z
′

j , we assume that the
change is a localized change (Palmquist, 1992), and therefore, the hedonic price function does not shift in
response to this change. This is a valid assumption as the number of counties that we study only represents
a small portion of the entire U.S. housing market (see Section 3). Hence, any air quality improvement in
these counties is not enough to force a significant relocation of individuals that could lead to a new hedonic
price equation.
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3. Data

3.1 Power Plants

Data on electricity generation units (EGUs) come from the Annual Electric Generator

Reports (Form EIA-860), compiled by the Energy Information Administration (EIA). This

survey data contains annual information on existing and planned generator units that belong

to medium and large-scale power plants with generation capacity equal or higher than 1

MW.5 From this survey, we consider EGUs capacity, age, primary technology, and primary

fuel type, among other features. A key feature in establishing accurate market effects of

the fuel switching is the geographical location of the switching stations. The EIA-860 form

reports the geo-location of each power plant in the U.S. since 2009, which is the primary

reason to study the period between 2009 and 2018.6

Power plants generally operate with more than one EGU and, depending on their com-

bustion technology, can have several boilers (Ummel, 2012). This complexity challenges the

plant classification as EGUs can run with more than one fuel source. Thus, to identify the

stations that switched from coal to natural gas in at least one of their generators, we classify

the EGUs by their primary technology and their primary fuel source. We identify those

proposed gas-fired EGUs from the set of “proposed EGUs” during 2009 and 2018 that were

expected to run with natural gas (or blast furnace gas or other gas) as their primary fuel.

This leads us with 1,141 proposed gas-fired EGUs located in 368 different power stations

across the country. The spatial location of the power stations with at least one proposed

new gas-fired EGU is displayed in the top panel of Figure 2.

[INSERT FIGURE 2 ABOUT HERE]

Though the proposed gas-fired EGUs were expected to start power generation during the

study period, it is not certain that they were in fact operating, or that they are actually

planned to replace old coal-fired EGUs. To solve this, we first identify the set of proposed

gas-fired EGUs that were effectively generating electricity during 2009-2018 by matching

them to gas-fired units in operation. In this process, we dismiss all generators running with

primary fuels other than natural gas (or blast furnace gas or other gas), and then discard all

the plants that during the study period report to have generators with a status other than

“in operation” as a manner of avoiding that factors other than fuel switching could confound

5Further information on the Form EIA-860 and the public data available at Form EIA-860’s website:
https://www.eia.gov/electricity/data/eia860/.

6Another reason for selecting 2009 as the starting period is to minimize the effects of the subprime
mortgage crisis and subsequent recession.
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the analysis.7 The resulting dataset corresponds to the set of power plants continuously in

operation with at least one new gas-fired EGU generating power in 2009 or afterwards.

We use a similar procedure to identify the set of retired coal-fired generators. From the

set of “retired EGUs”, we identify the units for which coal, or any of its derivatives, is listed

as their primary fuel source.8 This leads us to 518 retired coal-fired EGUs in 232 plants

across the country, whose location is displayed in the bottom panel of Figure 2. We match

these EGUs to the set of coal-fired operable units to identify the exact time of retirement.

Here, we dismiss all the generators that during 2009 and 2018 report primary fuels other than

coal (or its derivatives), and then we rule out plants that over time report their generators

with a status other than “in operation”. The final dataset contains all the power stations

that, between 2009 and 2018, retired at least one coal-fired EGU in continuous operation

prior to the retirement. As a final step, we put together the set of plants with new gas-fired

generators and the set of plants with retired coal-fired generators. The results is a set of 10

plants in the states of Colorado, Georgia, Indiana, Minnesota, North Carolina, Pennsylvania,

and South Carolina, as shown in Figure 3. Table 1 displays the list of these fuel-switching

plants (or “treated” plants), including the stations’ names, their location, and the number

of new EGUs introduced. This Table displays the timing of the switching as well, which we

define as follows: (1) the year in which the coal-to-gas plants shutdown the first coal-fired

generator, and (2) the year in which they put the first gas-fired unit into operation.

[INSERT FIGURE 3 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

3.2 Emission Data

Information on emissions from power plants come from the Form EIA-923 from the EIA

as well. This survey is an operation report that contains plant-level detailed information such

as plants’ generation, fuel consumption, fossil fuel stocks, and emissions. We specifically use

the annual schedules 8A-F on nitrogen dioxides (NOX) emission rates at the plant-level.9

7Other status are “temporary out of service” or “stand by”.
8Coal derivatives refer to anthracite coal, bituminous coal, lignite coal, coal-derived synthesis gas, sub-

bituminous coal, refined coal, anthracite culm, bituminous gob, fine coal, lignite waste, and waste coal.
9Nitrogen dioxides (NOX) are a group of reactive gases that include nitrogen dioxide, nitrous acid,

and nitric acid. Although mobile sources are responsible for the highest domestic anthropogenic release of
NOX into the atmosphere, stationary fossil fuel combustion represents 29% of the annual domestic NOX

emissions (U.S. Environmental Protection Agency, 2018). Evidence about outdoor exposure to NOX suggests
an increase in asthma and bronchitis diagnoses in children (Pershagen et al. (1995); Orehek et al. (1976);
Chauhan et al. (2003); Gauderman et al. (2005)). Also, NOX can react to the presence of heat and sunlight in
the atmosphere to create ground-level ozone (smog), a pollutant associated with lung diseases, and premature
deaths (Bell et al., 2004, 2005).
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Though data on PM, SO2, or Mercury was also available, we dismiss these variables due to

the significant number of missing entries.

Figure 4 shows average NOX emissions for the coal-to-gas plants (left-hand panel), and

for coal-fired plants that are located in the same states than fuel-switching plants but did not

innovate (middle panel). In Figure 4, we also include plants that belong to the treated states

but that, at the beginning of our study, period were running with natural gas as their primer

fuel (right-hand panel). The first thing to notice from Figure 4 is that, as expected, average

NOX emissions from coal-fired power stations (middle panel) are substantially higher than

those from gas-fired units (right-hand panel). Fuel-switching plants (left-hand panel), how-

ever, start the period with emission levels significantly higher than similar coal-fired plants

that did not innovate (middle panel), suggesting that fuel-switching plants are relatively

more dirty than other (similar) coal-fired stations. By the end of the study period, how-

ever, coal-to-gas-fired plants reach an emission level similar to the one exhibited by gas-fired

plants. The visual exercise in Figure 4 constitutes evidence that local air quality is expected

to improve around coal-fired power plants switching to natural gas.

[INSERT FIGURE 4 ABOUT HERE]

3.3 Property Transactions and Weather

Data on property transactions come from Zillow, a national web-based real estate data

provider, with information on buying, selling, renting, and remodeling of more than 110

million homes in the U.S. The Zillow data contain information on structural characteristics

of properties, such as the number of rooms, number of bathrooms, their address and geo-

graphical location, the square footage, the year the structure was built, and the number of

stories.

From the full dataset, we select transaction records of residential properties sold in the

state where treated plants are located. We restrict the data to only arm’s-length transactions

on single-family residential homes that involve a single parcel. To minimize data entry error,

we trim the top and bottom 1% of the data using square feet, number of full bathrooms,

total bedrooms and total rooms. We also dismiss all transactions reporting a construction

year after the sale year. Finally, we discard all transactions with a sales price less than

$10,000, and at a distance equal or smaller than 10 miles (≈16 km) from the treated plants.

The final dataset contains more than 300,000 property transaction records that took place

near treated plants and between 2009 and 2018. The descriptive statistics for these main

variables are in Panel A of Table 2.

[INSERT TABLE 2 ABOUT HERE]
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Data on weather come from the National Oceanic and Atmospheric Administration’s

(NOAA) Global Historical Climate Network Daily catalog, from which we gather station-

level data on temperature and wind speed. We match station-level information to homes

using shortest distance between a monitoring station and the house. Descriptive statistics

for these variables are in Panel B of Table 2.

4. Empirical Strategy

4.1 Baseline Specification

Our goal in this study is to capture housing market effects of local air quality improve-

ments in the neighborhood of coal-fired plants switching to natural gas. To this end, we

compare the sales prices of properties located at certain distances from the fuel-switching

plants, before and after the switching. While this first difference gives us an idea of how prices

of nearby properties change over time after controlling for year-level unobservable factors,

time-invariant unobservables that vary with distance to the plants may still affect property

values. For instance, houses might not necessarily perceive the air quality improvements

from the fuel switching if they are located outside the trajectory that emissions from these

plants normally follow, which could be the case of houses that are located upwind or farther

away from the switching plants. To account for this spatial heterogeneity, we combine the

previous time difference with a second one that is consistent to the presence of spatial-level

unobservables. We specifically estimate the following difference-in-difference (DD) baseline

equation:

ln(y)ijt = β0 + β11[S]d≤θijt + β21[t ≥ t∗]ijt + β31[S]d≤θijt × 1[t ≥ t∗]ijt + Xitη + κ+ εijt, (2)

where ln(y)ijt is the log of the price y of house i in the neighborhood of plant j sold at

time t; 1[t ≥ t∗]ijt is an indicator variable taking 1 if house i was sold in year t ≥ t∗ where

t∗j is plant j’s switching year (=0 otherwise); Xit is a vector of house i characteristics and

weather during year t; κ is a spatial fixed-effect (i.e. county, and state × year); and εijt is

an idiosyncratic error. An important variable in our baseline equation (2) is the indicator

1[S]d≤θijt that takes the value of 1 if house i, sold in year t, is located at a distance d ≤ θ from

plant j (=0 otherwise). We refer to this specification as the “near/far”, which gives us a

broad approximation of the fuel switching effect on property prices.

Though proximity to a dirty facility might be an important indicator of exposure to

pollution, other factors such as wind direction can drastically affect the trajectory of emis-

sions and thus marginal willingness-to-pay estimates for air quality improvements. For this
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reason, we reinforce the DD specification in equation (2) using wind exposure to pollution

obtained from the HySplit Trajectory Model, from the NOAA Air Resources Laboratory,

on the 24-hour trajectory of emissions from each of the treated plants (Stein et al., 2015).10

With this information, we split the sample between properties that are located downwind

and upwind the switched plants using a 90-degree angle range (and its opposite) around

the trajectory revealed for each treated plant. In this “downwind/upwind” DD design, the

indicator 1[S] is replaced with wind exposure taking 1 if house i is located downwind and at

a distance d ≤ θ from plant j, and 0 otherwise. In this second specification, the coefficient

β3 in equation (2) measures the property price impact of the fuel switching on downwind

properties. This is our preferred specification. Figures A1 and A2 in the Appendix describe

both the “near/far” DD and the “downwind/upwind” DD designs.

In the estimation of equation (2), it is important to take into account the timing of

the switch, or in other words, the time of the treatment implementation. We follow two

different approaches to identify this period. In the first approach, we consider the year in

which treated plants stop using the first coal-fired generator (see Table 1, column 6), which

allows us to identify the property house impact of the halting high emission generators. We

call this “treatment 1” and constitutes our main treatment. Yet, as shown in Table 1, the

majority of the coal-fired power stations switching from natural gas were not only switching

fuels, but also expanded their capacity. To the extent that this increased capacity comes

together with more direct or indirect jobs, then potential housing price capitalizations will

not only capture local air quality improvements but also any boost to the local economy. To

differentiate these effects, we use an additional treatment period, “treatment 2”, defined as

the time when the first gas-fired units start the generation in each plant (Table 1, column

7). We anticipate that if any, treatment 2 will derive higher treatment effects.11

Empirical evidence shows that in most cases, pollution is detectable only at a small

radius of distance from the polluting facility, which generally does not exceed 2 miles (Davis

(2011); Hodge (2011b); Currie et al. (2015); Muehlenbachs et al. (2015)). Based on this, we

consider several small radii of distances for θ, starting at 0.6mi and with 0.3-mi increments

10We run the HySplit model considering the 24-hour trajectory of emissions during the year of dismissal
of the first coal-fired generator in each plant. For more information on the trajectory model, see NOAA Air
Resources Laboratory’s website: https://www.ready.noaa.gov/HYSPLIT_traj.php.

11In a fashion similar to Figure 4, Figure A3 (Appendix) plots NOX emissions by state and type of plant.
Solid red lines indicate the year of shutdown of the first coal-fired generator (or treatment 1) and dashed
blue lines indicate the year of startup of the first gas-fired generators (or treatment 2). For cases with only
solid lines, these two years coincide. As observed in this Figure, treatment 1 seems to be the most accurate
time with regards to a substantial emission downsize. See for instance Colorado (panel a), Indiana (panel
c), Minnesota (panel d), North Carolina (panel e), and South Carolina (panel g). For Georgia (panel b),
average NOX emissions fall drastically during the year of retirement of the first coal-fired EGU, while for
Pennsylvania (panel f) this happens after startup of the first gas-fired EGU, as shown by the dashed line.
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up to θ̄.12 To avoid the transition of houses between the treatment and the control groups

when varying the radii size, the variable 1[S]d≤θijt takes the value of 0 whenever house i is

located at distance d > θ̄ from plant j. We decide on the value of θ̄ using a strategy similar to

Muehlenbachs et al. (2015). Figure A4 (Appendix) displays the residuals from the regression

of (log) prices on our covariates Xit and fixed effects κ, before (dashed line) and after (solid

line) the two treatments and at different distances from the plants. In panel (a), we observe

a notable increase in property prices after treatment 1 and up to 5 miles from the facility,

distance after which this difference becomes less sharp. A similar conclusion is observed in

panel (b) for treatment 2. The price differential before and after the fuel switching is evident

in Figure A4 regardless of the type of treatment, and significant only up to miles 4-5. For

this reason, we set θ̄ equal to 5 miles.13 Distances to power plants are calculated using the

geodist command in Stata®. All estimations allow for standard errors to be clustered at

the county-year level.

4.2 Homes Near Coal-Fired Plants that Do Not Innovate

While the previous approach allows us to identify housing market capitalizations of prox-

imity to fuel-switching facilities, our goal is to identify the property price impact of a localized

improvement in air quality from reduced coal combustion. To properly disentangle the effect

of changes in local air quality from the general (dis)amenity effect of proximity to fossil-

fueled power plants, we consider an additional approach that takes into account potential

unobservable factors that could be common to neighborhoods hosting the siting of these

plants. To that end, we replace the previous spatial source of variation with the price differ-

ential that emerges from the comparison of homes that are located in the vicinity of treated

plants and homes that are located in the vicinity of coal-fired plants that did not switch. In

other words, we use houses near coal-fired-non-switching power plants as controls in lieu of

houses that are located either upwind or farther away from a treated plant, through which

we enhance the homogeneity of homes across the treatment and control groups. In this case,

we modify equation (2) as follows:

ln(y)ijt = γ0+γ11[Treated]d≤θijt +γ21[t ≥ t∗]ijt+γ31[Treated]d≤θijt ×1[t ≥ t∗]ijt+Xitζ+κ+νijt,

(3)

where ln(y)ijt is the log of the price y of house i, sold in year t, and located in the vicinity

of plant l, with l ∈ L, and L = {T ∪ C} corresponds to the joint set of treated plants (T)

12We start at 0.6 miles because is roughly equivalent to 1 kilometer.
13This means that 1[S]d≤θijt takes 0 whenever house i is located at distance d ∈ [5, 10] from plant j.

11



and coal-fired-non-switching power plants (C).14 The variable 1[t ≥ t∗]ijt takes 1 if home i,

in the vicinity of plant l ∈ T , is sold in year t ≥ t∗ where t∗ is plant j’s switching year (or if

home i is in the vicinity of coal-fired power plant l ∈ C near a switching plant l ∈ T ), and

0 otherwise; and the indicator 1[Treated]d≤θijt takes 1 if house i is at distance d ≤ θ from a

treated plant l ∈ T , and 0 if house i is at distance d ≤ θ from a control plant l ∈ C, where θ is

set equal to 5 miles. The graphical intuition behind this design is in Figure A5 (Appendix).

In this alternative specification, γ3 reflects the property price impact of proximity to a fuel-

switching plant after controlling for time-invariant and time-variant unobservable factors

that are common to neighborhoods hosting the siting of polluting plants.

4.3 Triple-Differences Estimators

We add robustness to the previous designs by combining them in two different triple-

differences (DDD) estimations. First, we use homes with downwind and upwind exposure

in combination with homes that are located near and farther away from a switching plant,

before and after the switching. We call this the “downwind/upwind near/far” DDD estima-

tion, from which we derive an estimator that is robust to time-variant and time-invariant

unobservables that vary with wind exposure and distance to the fuel-switching plants. Sec-

ond, we use homes with downwind and upwind exposure that are relatively close to both

treated and control plants, that is, coal-fired plants that did not innovate. We call this

the “downwind/upwind near treated/near coal” DDD approach, which delivers an estimator

that is robust to time-variant and time-invariant unobservables that vary with wind expo-

sure, while controlling for factors that are common to neighborhoods hosting coal-fired power

plants (Davis, 2011). Ultimately, our goal is deriving treatment effects solely due to air qual-

ity improvements while taking into account unobservables common to neighborhoods around

these facilities, thus, this last DDD specification is our preferred DDD design. Figures A6

and A7 (Appendix) depict these two DDD designs.

4.4 Control Function Approach

One identification concern is the existence of omitted variables common to neighbor-

hoods around coal-to-gas plants that could affect both the probability of switching fuels and

property prices. For instance, favorable educational trends in certain neighborhoods might

push home values up and simultaneously exert political pressures on the emission levels of

polluting facilities accelerating the fuel switching process. If relevant factors common to fuel-

switching neighborhoods are omitted from the analysis, then our estimates that use homes

14We only select those coal-fired power plants that are located in the same states as treated plants.
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around other plants that did not switch would be upward biased. To shed light on this

concern, Figure A8 (Appendix) exhibits the trends in rental prices for homes in the neigh-

borhood of treated plants (solid line) and coal-fired-non-switching power plants (dashed line)

for 2009, the pre-treatment year in our sample. As anticipated, rental prices differ between

treated and control areas, an indication that the coal-to-gas switching could be endogenous

to omitted variables.

We offer a solution to this potential endogeneity with an instrumental variable approach

that uses a control function (CF) estimation method in our double- and triple-differences

equations.15 In particular, we estimate the following first-stage binary response model on

the probability of switching fuels:

P (sit = 1) = δ1 + Z
′

itδ2 + κ+ eit, (4)

where sit is an indicator variable taking 1 if plant i switched fuels in year t (=0 otherwise),

Zit is a vector of plant-year characteristicis, κ are state-level fixed effects, and eit is an error

term that follows a standard normal distribution. The vector Zit includes state-fixed effects

in addition to exogeneous variables such as summer and winter generation capacity, and age

of the oldest generator.16 After estimating equation (4), we compute the generalized probit

residuals, ĝrit, which we include we include as an additional regressor in the estimation of

equations (2) and (3) and in our triple-differences estimations. We adjust the standard errors

in the second step using the Delta Method.

5. The Property Value Impact of the Coal-to-Gas Fuel

Switching

5.1 Differences-in-Differences

The first set of DD estimations on the property value impact of fuel switching is displayed

in Table 3.17 Panel A exhibits the estimation results for the DD parameter β3 in equation

(2) for the “near/far” DD specification, while Panel B exhibits similar results but for the

15The control function approach has been proven to be more efficient in estimating average treatment
effects when the potential endogenous variable is a binary variable (Wooldridge, 2010), which in our case is
equal to 1 whenever a coal-fired plant switches to natural gas, and 0 otherwise.

16Ideally, we would include other plant-level characteristics such as NOX emissions. Unfortunately, we
were not able to do so due to some missing data for treated plants in NC and PA.

17Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More
information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions
are those of the authors and do not reflect the position of Zillow Group.
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“downwind/upwind” design, both using a control function estimation approach.18 The in-

formation is displayed by treatment, and the different columns represent several buffers of

distance around the treated stations. Further results follow a similar format.

[INSERT TABLE 3 ABOUT HERE]

Starting with the “near/far” approach in Panel A, we observe no property value impacts

of adjacency to a power station that shuts down one of its coal-fired generators (i.e. treatment

1). Yet, when we allow the treatment to be defined as the startup of new gas-fired EGUs,

we observe positive and significant property price impacts that vary with distance to the

plants. In particular, the results for treatment 2 in Panel A reveal that power generation by

new gas-fired EGUs increases property values by 12% within .9 miles of distance from these

plants relative to homes that are located at more than 5 miles away. This impact remains

positive and significant when larger radii of distances are considered. Indeed, the average

marginal price effect on residential homes within 5 miles from stations with new gas-fired

EGUs is estimated at roughly 24% relative to homes farther away.

While treatment 2 suggests positive and significant effects when using the “near/far” DD

approach, it is hard to attribute this effect to a potential reduction in air pollution from

reduced coal combustion. If the coal-to-gas-switching led to an improvement in air quality,

retiring coal-fired generation units should impact prices of homes that are truly affected

by emissions from these plants. To shed light on this, Panel B displays the results of the

estimation of equation (2) but using wind exposure as the source of spatial variation, our

preferred DD specification.19,20 In this case, the two different treatments both yield positive

and significant results. When the shutting of a coal-fired generator is considered, the result

in Panel B of Table 3 indicates a positive and significant exp(.136)-1 = 15% price increase

for downwind homes that are within 1.2 miles of distance from these plants relative to homes

outside the trajectory of these plants’ emissions. This effect remains positive and significant

up to 1.5 miles. In this last case, we see that the shutdown of the first coal-fired generators

in fuel switching stations led to a 10% increase in property prices of downwind residential

homes within 1.5 miles of distance from these stations. We take these results as suggestive

evidence of the property price impact of coal-to-gas fuel switching.

18OLS results are similar as these estimations only use information around treated plants.
19Estimation results for the DD parameter are not computable for the .6-mile radius due to the small

number of observations with downwind exposure within this buffer.
20Figure A9 (Appendix) displays the parallel trends assumption (left-hand side panels) using downwind

(treatment) and upwind (control) exposure, before and after treatment 1 (panel a) and treatment 2 (panel
b). As shown, the common trends assumption clearly holds for treatment 1, while for treatment 2 there is
a switch in trends two years before the treatment. This switch in trends is likely due to the past occurrence
of treatment 1.
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When we define the treatment as the startup of new gas-fired generators, we also observe

a positive and significant estimated effect, although higher in magnitude relative to treat-

ment 1. This could be reflecting reduced emissions from either the subsequent shutdown of

additional coal-fired units following treatment 1, and captured by treatment 2, or the later

removal of ashes and other residuals associated with the coal burning and generally accu-

mulated on site. In any case, the average impact on downwind houses within 1.2 miles gets

roughly equivalent to a 35% price increase. The effect is significant at several miles from the

switching plants. A complete picture of the “downwind/upwind” DD estimation results for

the entire set of distances considered is depicted in Figure 5 for treatment 1 (panel a), and

for treatment 2 (panel b).

[INSERT FIGURE 5 ABOUT HERE]

To corroborate whether the previous positive price impact shown in Table 3 are in fact

due to a reduction of the negative externalities from coal combustion, Table 4 shows the

results after the estimation of equation (3), that is, the DD results using homes around coal-

fired power plants that did not switch as controls.21 We present the results by treatment

and estimation method, that is, OLS or the instrumental variable approach using a Control

Function (CF) estimation. Starting with treatment 1 and averaged across all columns, the

results for the OLS estimator suggest that the shutting down of coal-fired generators increase

property values of homes in the vicinity of these plants by 12% relative to homes around a

coal-fired-non-switching plant located in the same state. This effect is statistically different

from zero for all homes within 2 miles from treated plants. Similar results are found for

treatment 2, although a bit higher in magnitude. On average, the OLS estimates indicate

that the coal-to-gas switch led to a property price increase of a 13% for homes in the vicinity

of coal-to-gas plants relative to homes near a coal-fired plant after the starting of new gas-

fired generators.

[INSERT TABLE 4 ABOUT HERE]

To address the endogeneity concern in the previous results, we present the second-stage

CF estimates that use the generalized residuals, from the first-stage regression on the prob-

ability of switching fuels, as an additional regressor in estimating equation (3) (see Table A1

for first-stage results). The CF results indicate no evidence of property value impacts of the

fuel switching on homes near a coal-to-gas plant relative to similar homes near a coal-fired

station, suggesting an upward bias in the previous OLS results. Thus, once the probability

21The parallel trends assumption for this specification is displayed in the right-hand side panel of Figure
A9.
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of switching fuels is taken into account, we find no effects of the fuel-switching on nearby

homes relative to similar homes near plants that did not switch fuels. Next, we strengthen

this specification with wind exposure to pollution.

5.2 Triple-Differences Estimation

To verify the strength of the previous results, Table 5 exhibits the triple-differences

estimation that combines the two preceding approaches. First, we use homes’ wind exposure

to pollution from treated plants in combination with proximity to these stations, before

and after the treatments. This “downwind/upwind near/far” DDD is presented in Panel

A of Table 5. The second approach combines downwind exposure with proximity to both

treated and control plants. This is the “downwind/upwind near treated/near control” DDD

approach shown in Panel B. We present the two set of DDD results for treatments 1 and 2,

and for the OLS and CF estimators.

[INSERT TABLE 5 ABOUT HERE]

When spatial variation comes from both wind exposure and proximity to fuel-switching

plants (Panel A), the OLS results indicate that, relative to far and upwind homes, a reduction

in coal combustion increases property values in more than a 100% for downwind homes

located within a 0.6-mile distance from these facilities. This effect, however, disappears

at farther distances from the plants. The results for the CF estimator corroborate this

conclusion, although the estimated effect is found to be roughly 10% smaller in magnitude,

which once again suggests the existence of an upward bias in the OLS estimation. When we

consider treatment 2, the OLS estimator indicates an increase in property prices of a similar

magnitude and within .6 miles from the treated facility as well. Notwithstanding, this effect

turns into a negative impact when larger radii are considered. A negative price impact on

downwind homes that are located in the vicinity of switching stations after these plants

put gas-fired units into operation will certainly be affected by any lagged effect from the

shutdown of the coal-fired units in the first place. For instance, if the closure of coal-fired

units is coupled with short-term market expectations about future improvements in local

environmental quality and economic conditions, by the time in which the new gas-fired units

are introduced is then possible that these previous expectations are no longer in place, in

which case a negative effect would be merely reflecting a price adjustment relative to the

post-treatment-1 situation. These expectations can vary by wind exposure and proximity to

the facilities, adding an extra complexity to the analysis. Later in the text, we shed light on

this possibility by analyzing heterogeneous treatment effects over time.
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The results for the triple-difference estimators using wind exposure and proximity to both

treated and control plants (Panel B) suggest a positive and statistically significant property

price impact. When power plants retire a coal-fired generator, our OLS estimator indicates a

37% price difference between downwind and upwind homes within 1.2 miles from these plants

relative to a similar difference between homes around coal-fired plants that do not retire

their generators. This effect is similar in magnitude when we use our instrumental variable

estimation. When larger radii for near properties are considered, we still find a positive and

significant effect. For instance, when selecting homes located within 1.8 miles from treated

plants, our CF estimate suggest that a reduction in coal combustion in the power industry

leads to a 20% price differential between downwind and upwind homes around a coal-to-gas

price relative to the similar homes around coal-fired-non-switching plants. Neighborhoods

around coal-fired plants are expected to have common demographic characteristics (Davis,

2011). Thus, we use this result as suggestive evidence that the coal-to-gas switching increases

property values by reducing some of the negative externalities associated exclusively with

coal-fired generation. At the same time, the significant price differential between homes

with downwind and upwind exposure to pollution from these plants implies that this effect

is largely due to an air quality improvement around plants curbing their coal combustion.

Findings in the bottom panel of Table 5 suggest a larger price impact when these plants

start their gas combustion, which is consistent with a boost to the local economy due to a

potential expansion in plants’ capacity (see Table 1). Another plausible explanation comes

from the presence of factors common to coal-fired power plants with the potential of affecting

downwind homes only, such as coal ash and on-site coal residual accumulation, which can

be fully removed from these places once the gas combustion starts generating posterior

improvements in environmental quality for downwind homes. In any case and when taken

together, the results in Table 5 are a strong evidence of the positive welfare effects of the coal-

to-gas conversion process on property values of homes affected by the coal-fired generation.

Figure 6 displays the causal effect of the coal-to-gas fuel switching for all the distance buffers

using wind exposure and proximity to both treated and control plants (Panel B of Table 5).

[INSERT FIGURE 6 ABOUT HERE]

5.3 Robustness Checks

Our results are robust to several other exercises summarized in Table 6. First, Panel A

of Table 6 presents the results of our double-differences CF estimator using homes around

gas-fired power plants as controls. We observe that, on average, and relative to homes that

are located in the vicinity of gas-fired stations, homes within 0.6 miles from coal-fired plants
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that are switching to natural gas experience a 30% price increase after this conversion. In

Panel B we present the results of a double-differences exercise that splits the area of upwind

exposure to pollution from treated plants in two equal parts, A and B (see Figure A10 for

a graphical explanation). Using one of them as a placebo set of homes (part A), we find no

effects of the fuel switching after the closure of a coal-fired generator or after startup of the

new gas-fired generators, and for none of the distance buffers considered. Finally, Panel C

exhibits the triple-differences CF estimator splitting the upwind area and using proximity

to treated and coal-fired power plants. The results reveal no property price effects of the

coal-to-gas switching process.

[INSERT TABLE 6 ABOUT HERE]

5.4 Announcement Effects

Though the previous results represent robust evidence that the fuel switching led to a

positive price impact, none of the previous specifications can rule out the possibility that

these effects are indeed responding to households’ expectations regarding a future decline

in airborne contamination instead of capturing actual reductions. To test this idea, we

replace the year of the treatment implementation by the year in which the natural gas

power generation was first announced in the local newspapers of areas hosting fuel-switching

plants. For all the cases, this year precedes the closure of the first coal-fired generator. Table

7 presents these results for all the different estimations, using the announcement year as the

treatment year.

[INSERT TABLE 7 ABOUT HERE]

Overall, we cannot reject the existence of announcement effects in the immediate vicinity

of coal-to-gas-fired power plants. For instance, when using our double-difference estimator

with wind exposure (Panel B), we see that roughly 80% of the property price impact found

previously for downwind homes within 0.9 miles (Table 3, Panel B) can be attributed to

households’ anticipation to the eventual positive effects of the fuel switching. Yet, these

effects are found to be sensitive to the comparison group. For example, the results in Panel C

reveal that neighborhoods near a plant announcing the fuel switching experience a decrease

in property prices relative to similar neighborhoods around coal-fired plants that are not

planning to switch. Yet, when we enrich this approach with variation in wind exposure, the

results in Panel E once again suggest that around 80% of the previous effect estimated in

Table 5 (Panel B) is due to anticipation effects. Whether the previous findings are driven by
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buyers’ and sellers’ expectations instead of by improvements in environmental amenities, can

be answered through the exploration of time-heterogeneous impacts of the fuel switching.

[INSERT FIGURE 7 ABOUT HERE]

Figure 7 plots the CF treatment effects of the coal-to-gas switching using our preferred

estimation design (“Downwind/Upwind” DD) for the three different treatment specifications:

the announcement in local newspapers, the closure of the first coal-fired EGUs (treatment

1) and the startup of the first gas-fired EGUs (treatment 2). Dashed lines represent 95%

confidence intervals. We observe that homes with downwind pollution exposure located

in the immediate vicinity of treated plants (within 1.2 miles) exhibit a positive although

weakly significant announcement (anticipation) effect. This effect turns out to be strongly

significant and close to the 16% price increase for the period between the fuel-switching

announcement and the shutting down of the first coal-fired generators (treatment 1), which

we take as evidence of an effective minimization of the negative externalities associated to

the coal burning. The estimated impact turns into a roughly 54% price increase between the

closure of these coal-fired units and the startup of the new generators (treatment 2). This

gradual increase in prices over time as we modify the treatment suggest that households are

correctly responding to the minimization of negative externalities from the coal combustion.

In particular, the estimated impact in Figure 7 suggest that even when households seem to

have anticipated to the coal-to-gas fuel switching, the positive treatment effects remains in

place (within 1.2 miles from these plants) after these stations effectively close their coal-fired

generators. Furthermore, this effect becomes even more significant by the time in which

these plants start the operation of the new gas-fired generators. Indeed, these last effects

seem to persist inclusive for downwind homes located beyond 2 miles from these plants.

6. Conclusions

Fossil-fuel power generation is accountable for pronounced impacts on local air quality.

Yet, the recent coal displacement by natural gas as the primary fuel source in the U.S. power

generation promises several environmental improvements at both the global and the local

scale. In this work, we delve into the property value impacts of the coal-to-gas fuel-switching

process carried out by several power stations throughout the country. We use an extensive

dataset of property transactions that took place in the vicinity of switching power plants

from 2009 to 2018. To approach causality, we use difference-in-difference estimation equa-

tions combined with triple differences designs that use an instrumental variable estimator to

control for endogeneity.
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Our findings indicate positive and significant impacts of this fuel-switching process within

1.2 miles from the coal-to-gas power plants. These impacts are found after the shutdown of

coal-fired generation units persisting after the first gas-fired units are put into operation. In

particular, the findings from our preferred “downwind/upwind” double-differences estimation

reveal that downwind homes within 1.2 miles from fuel-switching plans experience a 15%

increase in property prices after the closure of coal-fired generators relative to upwind homes.

Our estimation exercise also reveals that some households anticipate to the fuel switching

as reflected by a price increase in affected homes before the reduction in coal combustion.

Yet, a deeper analysis on yearly heterogeneous effect indicates that even though households

anticipate, they do so correctly, and so the positive price effects of the fuel switching remain

in place even after plants shutdown their coal-fired units or start up their gas-fired generation.

We can use the previous estimated impact to provide some back-of-the-envelope welfare

estimates of the fuel switching. The average home price within 1.2 miles from the coal-to-

gas plants in our sample is equal to $261,273. A 15% price increase is equivalent to $39,191

dollars on average for a single house in the immediate vicinity of these plants. For each

coal-to-gas plant in our sample, we have an average of 196 houses that are in close proximity

(within 1.2 miles ≈ 2km), and from Figure 2, we have that an average of 232 coal-fired

power plants projected to switch to natural gas. This gives us a total welfare impact of

$1.78 billion dollars in the immediate vicinity of the stations switching from coal to natural

gas. Considering that many of these plants are simultaneously increasing their capacity

which might boost the local economy, we conclude this is a conservative estimate of the

whole fuel-switching impact on property prices in the United States.

Our findings need to be considered in light of recent debates regarding the future of

coal-fired power generators in the country. The so called “war on coal” has centered the

public’s attention on the negative economic effects of moving the grid towards a cleaner

generation, while ignoring the potential benefits that this fuel switching may bring to local

economies. Access to a cleaner air (Linn and Muehlenbachs, 2018; Johnsen et al., 2019),

or lower electricity prices (Linn and Muehlenbachs, 2018) are some of the channels through

which the coal displacement by a natural gas can improve local welfare. Here, we provide

evidence of a complementary channel: property prices. Other co-benefits of a cleaner grid

that complement this equation are the potential health improvements and health cost savings

from a reduced poor air quality. To the extent that this innovation is coupled with increments

in capacity and plant expansions might add an extra boost to local economies increasing some

of the indirect benefits of this fuel conversion.

20



References

Bell, M. L., Dominici, F., and Samet, J. M. (2005). A Meta-Analysis of Time-Series Studies

of Ozone and Mortality With Comparison to the National Morbidity, Mortality, and Air

Pollution Study. Epidemiology, 16(4):436–445.

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and Dominici, F. (2004). Ozone and

Short-term Mortality in 95 US Urban Communities, 1987-2000. JAMA, 292(19):2372–

2378.

Blomquist, G. (1974). The effect of electric utility power plant location on area property

value. Land Economics, 50(1):97–100.

Burnham, A., Han, J., Clark, C. E., Wang, M., Dunn, J. B., and Palou-Rivera, I. (2011).

Life-Cycle Greenhouse Gas Emissions of Shale Gas, Natural Gas, Coal, and Petroleum.

Environmental Science & Technology, 46(2):619–627.

Chauhan, A. J., Inskip, H. M., Linaker, C. H., Smith, S., Schreiber, J., Johnston, S. L., and

Holgate, S. T. (2003). Personal exposure to nitrogen dioxide (NO2) and the severity of

virus-induced asthma in children. The Lancet, 361(9373):1939–1944.

Currie, J., Davis, L., Greenstone, M., and Walker, R. (2015). Environmental Health Risks

and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings. The Amer-

ican Economic Review, 105(2):678–709.

Davis, L. W. (2011). The Effect of Power Plants on Local Housing Values and Rents . Review

of Economics and Statistics, 93(4):1391–1402.

Deng, G., Hernandez, M. A., and Xu, S. (2014). When Power Plants Leave Town: Environ-

mental Quality and the Housing Market in China. Available at SSRN 2502442.

Farah, N., Boslett, A., and Hill, E. (2019). The king is dead, long live the king? the effects

of power plants on housing prices in the age of coal-switching. Unpublished Manuscript.

Freeman, A. M. (1979). The Hedonic Price Approach to Measuring Demand for Neighbor-

hood Characteristics. In Segal, D., editor, The Economics of Neighborhood, chapter 9,

pages 191–217. Elsevier.

Freeman III, A. M., Herriges, J. A., and Kling, C. L. (2014). The Measurement of Environ-

mental and Resource Values: Theory and Methods. Routledge.

21



Gamble, H. B. and Downing, R. H. (1982). Effects of nuclear power plants on residential

property values. Journal of Regional Science, 22(4):457–478.

Gamper-Rabindran, S. and Timmins, C. (2013). Does cleanup of hazardous waste sites

raise housing values? Evidence of spatially localized benefits. Journal of Environmental

Economics and Management, 65(3):345–360.

Gauderman, W. J., Avol, E., Lurmann, F., Kuenzli, N., Gilliland, F., Peters, J., and Mc-

Connell, R. (2005). Childhood Asthma and Exposure to Traffic and Nitrogen Dioxide.

Epidemiology, 16(6):737–743.

Grainger, C. A. (2012). The Distributional Effects of Pollution Regulations: Do Renters

Fully Pay for Cleaner Air? Journal of Public Economics, 96(9-10):840–852.

Greenstone, M. and Gallagher, J. (2008). Does Hazardous Waste Matter? Evidence from

the Housing Market and the Superfund Program. The Quarterly Journal of Economics,

123(3):951–1003.

Hodge, T. R. (2011a). The effect of ethanol plants on residential property values: Evidence

from michigan. Journal of Regional Analysis and Policy, 41(1100-2016-89865):148–167.

Hodge, T. R. (2011b). The Effect of Ethanol Plants on Residential Property Values: Evidence

from Michigan. The Journal of Regional Analysis Policy, 41(2):148–167.

Holland, S. P., Mansur, E. T., Muller, N., and Yates, A. J. (2018). Decompositions and

policy consequences of an extraordinary decline in air pollution from electricity generation.

Technical report, National Bureau of Economic Research.

Jacobsen, G. D. (2019). Who wins in an energy boom? evidence from wage rates and

housing. Economic Inquiry, 57(1):9–32.

Jaramillo, P., Griffin, W. M., and Matthews, H. S. (2007). Comparative Life-cycle Air

Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity Generation.

Environmental Science & Technology, 41(17):6290–6296.

Johnsen, R., LaRiviere, J., and Wolff, H. (2019). Fracking, coal, and air quality. Journal of

the Association of Environmental and Resource Economists, 6(5):1001–1037.

Kiel, K. A. and McClain, K. T. (1995a). House Prices during Siting Decision Stages: The

Case of an Incinerator from Rumor through Operation. Journal of Environmental Eco-

nomics and Management, 28(2):241–255.

22



Kiel, K. A. and McClain, K. T. (1995b). The effect of an incinerator siting on housing

appreciation rates. Journal of Urban Economics, 37(3):311–323.

Kohlhase, J. E. (1991). The impact of toxic waste sites on housing values. Journal of Urban

Economics, 30(1):1–26.

Linn, J. and Muehlenbachs, L. (2018). The heterogeneous impacts of low natural gas prices on

consumers and the environment. Journal of Environmental Economics and Management,

89:1–28.

Linn, J., Muehlenbachs, L., and Wang, Y. (2014). How do natural gas prices affect electricity

consumers and the environment? Resources for the Future Discussion paper, (14-19).

Mendelsohn, R., Hellerstein, D., Huguenin, M., Unsworth, R., and Brazee, R. (1992). Mea-

suring hazardous waste damages with panel models. Journal of Environmental Economics

and Management, 22(3):259–271.

Mendelsohn, R. and Olmstead, S. (2009). The Economic Valuation of Environmental Ameni-

ties and Disamenities: Methods and Applications. Annual Review of Environment and

Resources, 34:325–347.

Muehlenbachs, L., Spiller, E., and Timmins, C. (2015). The Housing Market Impacts of

Shale Gas Development. The American Economic Review, 105(12):3633–59.

Orehek, J., Massari, J. P., Gayrard, P., Grimaud, C., and Charpin, J. (1976). Effect of

Short-Term, Low-Level Nitrogen Dioxide Exposure on Bronchial Sensitivity of Asthmatic

Patients. Journal of Clinical Investigation, 57(2):301–307.

Palmquist, R. B. (1992). Valuing Localized Externalities. Journal of Urban Economics,

31(1):59–68.

Pershagen, G., Rylander, E., Norberg, S., Eriksson, M., and Nordvall, S. L. (1995). Air

Pollution Involving Nitrogen Dioxide Exposure and Wheezing Bronchitis in Children. In-

ternational Journal of Epidemiology, 24(6):1147–1153.

Ridker, R. G. (1967). Economic Costs of Air Pollution, Studies in Measurement. Frederick

A. Praeger, Publishers, New York.

Ridker, R. G. and Henning, J. A. (1967). The Determinants of Residential Property Val-

ues with Special Reference to Air Pollution . The Review of Economics and Statistics,

49(2):246.

23



Rosen, S. (1974). Hedonic Prices and Implicit Markets: Product Differentiation in Pure

Competition. The Journal of Political Economy, 82(1):34–55.

Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and Ngan, F. (2015).

Noaa’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the

American Meteorological Society, 96(12):2059–2077.

Tollefson, J. (2013). Methane Leaks Erode Green Credentials of Natural Gas. Nature,

493(7430):12.

Ummel, K. (2012). Carma Revisited: an Updated Database of Carbon Dioxide Emis-

sions from Power Plants Worldwide. Available at SSRN: https://ssrn.com/abstract=

2226505.

U.S. Environmental Protection Agency (2018). Inventory of US Greenhouse Gas Emissions

and Sinks: 1990-2016. Environmental Protection Agency 2018.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

24

https://ssrn.com/abstract=2226505
https://ssrn.com/abstract=2226505


Figures and Tables

Figure 1: Bid Curves and the Hedonic Price Function in a Hedonic Market for Local Air
Quality
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(a) Power Plants Proposing Gas-Fired Generators

(b) Power Plants Planning to Retire Coal-Fired Generators

Figure 2: Power Plants Proposing Gas-Fired and Retiring Coal-Fired Generators

Notes: Using data from EIA-860 forms.
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Figure 3: Location of Treated Power Plants

Notes:Using data from EIA-860 forms.

Table 1: Treated Power Plants

ID Plant Name State
# Retired # New Year 1st Coal-F Year 1st Gas-F Average Capacity (MW)

EGUs EGUs EGU is Retired EGU Starts Coal Units Gas Units

1 Cherokee CO 3 3 2011 2015 365 600
2 Jack McDonough GA 2 7 2011 2011 502 2,201
3 Eagle Valley IN 4 3 2016 2018 257 644
4 Black Dog MN 2 1 2015 2018 219 228
5 Buck NC 4 1 2011 2011 369 170
6 Dan River NC 3 3 2012 2012 276 470
7 Hunlock Power St. PA 1 2 2010 2011 43 99.3
8 W S Lee SC 2 3 2014 2018 200 792
9 SABIC Innovativer IN 1 1 2017 2017 3 98.5
10 W Campus Penn St PA 2 2 2015 2017 1.1 5
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Figure 4: Power Plants and NOX Emissions

Notes: 2009-2018 data from the EIA-923 forms. Emissions from Coal-to-Gas plants correspond to the
emissions from 8 out of 10 treated plants identified in our sample. Coal and Natural Gas represent emissions
from coal-fired power plants and natural-gas-fired power plants in our control group, respectively.
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Table 2: Descriptive Statistics of Houses at Distance ≤ 10mi from Treated Plants

Variables Mean S.D. Min Max N

Panel A. House Characteristics:
Sales Price ($) 300,814.90 354,977.09 10,000 117,500,000 306,862
# of Full Bathrooms 1.88 0.87 0 4 306,862
# of Half Bathrooms 0.35 0.56 0 9 306,805
# of Rooms 4.19 3.34 0 11 306,862
# of Bedrooms 3.03 0.92 0 5 306,862
Home age 53.82 30.80 0 214 306,862
Square feet 1,672.60 753.7 712 5,696 306,862
Exterior Walls (material):

Brick (%) 14.50 198,895
Stucco (%) 8.18 112,120
Siding (%) 19.95 273,565
Wood (%) 15.13 207,485
Other (%) 42.24 579,153

Panel B. Weather:
Daily Maximum Temperature (F) 69.91 18.59 -14.8 104 301,540
Daily Temperature Range (F) 23.53 7.83 0.9 59.1 301,526
Daily Average Wind Speed 6.15 3.18 0 31.2 301,540
Daily Maximum Wind Speed 13.71 5.69 2.9 55 301,431

Notes: Weather variables obtained from the Global Surface Summary of the Day Data (NOAA). Wind
speed is in knots to tenths.
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Table 3: Coal-to-Gas Impact on Property Prices - Double Differences (DD)

Distance from Treated Plants

≤ 0.6mi ≤ 0.9mi ≤ 1.2mi ≤ 1.5mi ≤ 1.8mi ≤ 2.1mi

Panel A: Near/Far DD:
Treatment 1 (β3) 0.024 0.010 0.038 0.042 0.064 0.053

(0.052) (0.052) (0.068) (0.076) (0.081) (0.076)
Treatment 2 (β3) 0.070 0.124∗∗ 0.183∗∗ 0.218∗∗ 0.236∗∗∗ 0.226∗∗∗

(0.051) (0.054) (0.061) (0.068) (0.069) (0.065)

Panel B: Downwind/Upwind DD:
Treatment 1 (β3) - 0.354∗∗∗ 0.136∗∗ 0.095∗∗ 0.003 -0.034

- (0.072) (0.048) (0.045) (0.052) (0.049)
Treatment 2 (β3) - 0.526∗∗∗ 0.299∗∗ 0.189∗ 0.113 0.039

- (0.110) (0.111) (0.096) (0.098) (0.076)

Obs. Panel A 225,089 226,390 228,170 229,928 232,648 235,720
Obs. Panel B 140 556 1,313 2,036 3,370 4,833

Notes: Control function estimates that include # of bathrooms, # of half bathrooms, # of bedrooms, #
of rooms, type of exterior walls, house age, square feet, weather, and county, and state × year fixed effects
as regressors. Treatment 1 refers to the shutdown of the first coal-fired generators. Treatment 2 refers to
the startup of the first natural gas-fired generators. Clustered standard errors at the county × year level in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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(a) Treatment 1: Shutdown of First Coal-Fired EGUs

(b) Treatment 2: Starting up of First Gas-Fired EGUs

Figure 5: Downwind/Upwind Double-Differences Estimation Results

Notes: Double-differences control function estimates that include # of bathrooms, # of half bathrooms, #
of bedrooms, # of rooms, type of exterior walls, house age, square feet, weather, and county, and state × year
fixed effects as regressors. Treatment 1 refers to the shutdown of the first coal-fired generators. Treatment
2 refers to the startup of the first natural gas-fired generators. Clustered standard errors at the county ×
year level in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table 4: Coal-to-Gas Impact on Property Prices - Double Differences (DD) Using Homes
Near Coal-Fired Plants as Controls

Estimation Distance from Treated Plants

Method ≤ 0.6mi ≤ 0.9mi ≤ 1.2mi ≤ 1.5mi ≤ 1.8mi ≤ 2.1mi

Treatment 1 (γ3)
OLS

0.140 0.084∗∗ 0.119∗∗∗ 0.116∗∗∗ 0.130∗∗∗ 0.129∗∗∗

(0.085) (0.040) (0.033) (0.031) (0.027) (0.023)

CF
0.317 0.379 0.291 -0.167 -0.197 0.020

(0.544) (0.512) (0.331) (0.249) (0.243) (0.188)

Treatment 2 (γ3)
OLS

0.108 0.092 0.114∗∗ 0.093∗∗ 0.116∗∗∗ 0.167∗∗∗

(0.071) (0.056) (0.046) (0.037) (0.035) (0.030)

CF
0.501 0.380 0.430* 0.216 0.159 0.144

(0.371) (0.292) (0.222) (0.174) (0.171) (0.152)

Obs. 1,461 3,818 6,964 10,438 15,368 21,154

Notes: All estimations include number of bathrooms, number of half bathrooms, number of bedrooms,
number of rooms, type of exterior walls, house age, square feet, weather, and county, and state × year
fixed effects as regressors. Treatment 1 refers to the shutdown of the first coal-fired generators. Treatment
2 refers to the startup of the first natural gas-fired generators. OLS = Ordinary Least Square Estimates.
CF = Control Function Estimates. Clustered standard errors at the county × year level in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table 5: Coal-to-Gas Impact on Property Prices - Triple Differences (DDD)

Estimation Distance from Treated Plants

Method ≤ 0.6mi ≤ 0.9mi ≤ 1.2mi ≤ 1.5mi ≤ 1.8mi ≤ 2.1mi

Panel A: Downwind/Upwind NearTreated/FarTreated DDD:

Treatment 1
OLS

0.962∗∗∗ -0.133 -0.364 -0.205 -0.152 -0.190
(0.175) (0.213) (0.239) (0.220) (0.146) (0.134)

CF
0.955∗∗∗ -0.136 -0.368 -0.212 -0.152 -0.191
(0.176) (0.214) (0.240) (0.220) (0.146) (0.135)

Treatment 2
OLS

0.971∗∗∗ -0.332∗ -0.771∗∗∗ -0.703∗∗ -0.405∗∗ -0.435∗∗

(0.162) (0.191) (0.138) (0.234) (0.198) (0.168)

CF
0.971∗∗∗ -0.333∗ -0.772∗∗∗ -0.707∗∗ -0.408∗∗ -0.441∗∗

(0.162) (0.191) (0.138) (0.234) (0.199) (0.169)

Panel B: Downwind/Upwind NearTreated/NearControl DDD:

Treatment 1
OLS

0.437∗∗∗ 0.601∗∗∗ 0.313∗∗ 0.285∗∗ 0.186∗∗ 0.133
(0.111) (0.166) (0.103) (0.088) (0.087) (0.085)

CF
0.410 0.610∗∗∗ 0.315∗∗ 0.286∗∗ 0.186∗∗ 0.133

(0.856) (0.165) (0.104) (0.089) (0.088) (0.085)

Treatment 2
OLS

0.203∗ 0.777∗∗∗ 0.519∗∗∗ 0.442∗∗∗ 0.372∗∗ 0.289∗∗

(0.114) (0.177) (0.133) (0.113) (0.124) (0.105)

CF
1.273 0.757∗∗∗ 0.508∗∗∗ 0.434∗∗∗ 0.362∗∗ 0.287∗∗

(0.801) (0.182) (0.134) (0.111) (0.123) (0.104)

Obs. Panel A 80,821 81,237 81,994 82,717 84,051 85.514
Obs. Panel B 629 1,478 2,897 4,487 6,898 9,502

Notes: All estimations include number of bathrooms, number of half bathrooms, number of bedrooms,
number of rooms, type of exterior walls, house age, square feet, weather, and county, and state × year
fixed effects as regressors. Treatment 1 refers to the shutdown of the first coal-fired generators. Treatment
2 refers to the startup of the first natural gas-fired generators. OLS = Ordinary Least Square Estimates.
CF = Control Function Estimates. Clustered standard errors at the county × year level in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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(a) Treatment 1: Shutdown of First Coal-Fired EGUs

(b) Treatment 2: Starting up of First Gas-Fired EGUs

Figure 6: Downwind/Upwind NearTreated/NearCoal Triple-Differences Estimation Results

Notes: Triple-differences control function estimates that include number of bathrooms, number of half
bathrooms, number of bedrooms, number of rooms, type of exterior walls, house age, square feet, weather,
and county, and state × year fixed effects as regressors. Treatment 1 refers to the shutdown of the first
coal-fired generators. Treatment 2 refers to the startup of the first natural gas-fired generators. Clustered
standard errors at the county × year level in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.
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Table 6: Robustness Checks

Distance from Treated Plants

≤ 0.6mi ≤ 0.9mi ≤ 1.2mi ≤ 1.5mi ≤ 1.8mi ≤ 2.1mi

Panel A: NearTreated/NearGas DD:

Treatment 1
0.215∗ 0.008 -0.011 -0.045 -0.050 -0.063
(0.116) (0.075) (0.065) (0.066) (0.061) (0.056)

Treatment 2
0.305∗∗ 0.114 0.078 0.031 0.026 0.015
(0.127) (0.070) (0.068) (0.068) (0.058) (0.053)

Panel B: UpwindA/UpwindB NearControl DD:

Treatment 1
0.386 0.022 0.006 -0.028 -0.097 -0.067

(0.236) (0.138) (0.143) (0.115) (0.086) (0.077)

Treatment 2
0.172 0.020 0.028 0.015 -0.056 -0.070

(0.193) (0.120) (0.122) (0.109) (0.081) (0.071)

Panel C: UpwindA/UpwindB FarTreated/FarControl DDD:

Treatment 1
-0.002 -0.017 -0.022 -0.035 -0.039 -0.035
(0.086) (0.077) (0.070) (0.068) (0.068) (0.070)

Treatment 2
-0.047 -0.060 -0.070 -0.078 -0.078 -0.079
(0.079) (0.069) (0.062) (0.062) (0.061) (0.062)

Obs. Panel A 2,444 8,075 16,022 25,928 39,940 56,846
Obs. Panel B 133 303 532 697 1,019 1,418
Obs. Panel C 26,821 24,919 23,084 21,823 20,608 19,124

Notes: Control function estimations that include number of bathrooms, number of half bathrooms, number
of bedrooms, number of rooms, type of exterior walls, house age, square feet, weather, and county, and state
× year fixed effects as regressors. Upwind A and B refers to the split of the upwind area into two equal-area
triangles (see Figure A10 (Appendix) for a graphical description). Treatment 1 refers to the shutdown of the
first coal-fired generators. Treatment 2 refers to the startup of the first natural gas-fired generators. OLS
= Ordinary Least Square Estimates. CF = Control Function Estimates. Clustered standard errors at the
county × year level in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table 7: Announcement Effects

Distance from Treated Plants

≤ 0.6mi ≤ 0.9mi ≤ 1.2mi ≤ 1.5mi ≤ 1.8mi ≤ 2.1mi

Panel A: Near/Far DD:
Treatment: Announcement 0.014 -0.004 0.040 0.101 0.103 0.087

(0.089) (0.063) (0.077) (0.099) (0.115) (0.103)

Panel B: Downwind/Upwind DD:
Treatment: Announcement - 0.289∗∗∗ 0.205∗∗ 0.071 0.029 -0.035

- (0.082) (0.091) (0.077) (0.075) (0.053)

Panel C: NearTreated/NearControl DD:
Treatment: Announcement -0.271∗∗ -0.164∗∗ -0.069 0.003 -0.033 -0.002

(0.110) (0.075) (0.064) (0.053) (0.044) (0.038)

Panel D: Downwind/Upwind Near/Far DDD:
Treatment: Announcement -1.075∗∗∗ -0.282 -0.284 -0.328 -0.197 -0.257∗∗

(0.177) (0.293) (0.221) (0.210) (0.141) (0.117)

Panel E: Downwind/Upwind NearTreated/NearControl DDD:
Treatment: Announcement 0.045 0.529∗∗ 0.393∗∗ 0.108 0.068 0.055

(0.204) (0.237) (0.177) (0.131) (0.132) (0.101)

Obs. Panel A 225,089 226,390 228,170 229,928 232,648 235,720
Obs. Panel B 140 556 1,313 2,036 3,370 4,833
Obs. Panel C 1,461 3,818 6,964 10,438 15,368 21,154
Obs. Panel D 80,821 81,237 81,994 82,717 84,051 85,514
Obs. Panel E 629 1,478 2,897 4,487 6,898 9,502

Notes: Control function estimations that include number of bathrooms, number of half bathrooms, number
of bedrooms, number of rooms, type of exterior walls, house age, square feet, weather, and county, and
state × year fixed effects as regressors. Announcement refers to the year in which the switch to natural gas
was first announced in the local news. Clustered standard errors at the county × year level in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Figure 7: Yearly Heterogeneous Effects of the Coal-to-Gas Switching

Notes: Control function estimates using a Downwind/Upwind DD specification. Announcement refers to
the year in which the fuel switching was announced in local newspapers. Treatment 1 refers to the shutdown
of the first coal-fired generators. Treatment 2 refers to the startup of the first natural gas-fired generators.
Dashed lines represent 95% confidence intervals.
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A. Supplemental Material

Figure A1: Near/Far Differences-in-Differences Design

Notes: The figure depicts the spatial assortment of houses around a coal-to-gas-fired power plant X before
(left-hand side) and after (right-hand side) the switching. In both cases, a radius of distance d from power
plant X is used to define the set of houses that are located “near” the switching facility (gray area). In this
double differences design, the first price difference comes from the comparison of housing units inside the
gray area (near X), and housing units inside the blue area (far X). The second price difference comes from
the comparison of housing units before (year 1) and after (year 2) the switching.
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Figure A2: Downwind/Upwind Differences-in-Differences Design

Notes: The figure depicts the spatial assortment of houses around a coal-to-gas-fired power plant X before
(left-hand side) and after (right-hand side) the switching. Based on the downwind exposure, obtained from
the HySplit Trajectory Model, we select homes that are located upwind and downwind the facility using
a 90°-range around the plant. In this double differences design, the first price difference comes from the
comparison of housing units inside the gray area (downwind X), and housing units at the opposite (upwind
X). The second price difference comes from the comparison of housing units before (year 1) and after (year
2) the switching.
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(a) Colorado (b) Georgia

(c) Indiana (d) Minnesota

Figure A3: Power Plants and NOX Emissions by Selected State

Notes: The red line indicates the shutdown of the first coal-fired EGU (treatment 1), while the blue line
represents the startup of the first gas-fired EGU (treatment 2). No blue line means that treatment 1 and
treatment 2 coincide.
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(e) North Carolina (f) Pennsylvania

(g) South Carolina

Figure A3: Power Plants and NOX Emissions by State (Continued)

Notes: The red line indicates the shutdown of the first coal-fired EGU (treatment 1), while the blue line
represents the startup of the first gas-fired EGU (treatment 2). No blue line means that treatment 1 and
treatment 2 coincide.
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(a) Treatment 1: Shutdown of First Coal-Fired EGU

(b) Treatment 2: Startup of First Gas-Fired EGU

Figure A4: Property Value Prices and Distance from Coal-to-Gas Plants

Notes: Based on Muehlenbachs et al. (2015). Outcomes are log price residuals from the regression of prices
(in logs) on the number of full baths, number of half baths, number total bedrooms, type of exterior walls,
house age, squared feet, weather, and county, plant, and state × year fixed effects.
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(a) Coal-to-Gas-Fired Plant X

(b) Coal-Fired Plant Z

Figure A5: Near Coal-to-Gas/Near Coal Differences-in-Differences Design

Notes: The top figure (panel a) depicts the spatial assortment of houses around a coal-to-gas-fired power
plant X, before (left-hand side) and after (right-hand side) the switching. A radius of distance d from power
plant X is used to define the set of houses that are located “near” the switching facility (gray area). The
bottom figure (panel b) depicts the spatial assortment of houses around a coal-fired power plant Z, that
did not switch, before (left-hand side) and after (right-hand side) power plant X switched to gas. A radius
of distance d from power plant Z is used to define the set of houses that are located “near” the control
facility (gray area). In this double differences design, the first price difference comes from the comparison of
housing units inside the gray area that surrounds power plant X, and housing units inside the gray area that
surrounds power plant Z. The second price difference comes from the comparison of housing units before
(year 1) and after (year 2) the switching.
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Figure A6: Downwind/Upwind Near/Far Triple Differences Design

Notes: The figure depicts the spatial assortment of houses around a coal-to-gas-fired power plant X before
(left-hand side) and after (right-hand side) the switching. Based on the downwind exposure, obtained from
the HySplit Trajectory Model, we select homes that are located upwind and downwind the facility using
a 90°-range around the plant. In this double differences design, the first price difference comes from the
comparison of housing units inside the gray area (downwind X), and housing units at the opposite (upwind
X). The second price difference comes from the comparison of housing units before (year 1) and after (year
2) the switching. In this triple differences design, the first price difference comes from the comparison of
housing units inside the gray area (downwind X), and housing units at the opposite (upwind X). The second
price difference comes from the comparison of housing units inside the black area (near X), and housing
units outside in the blue area (far X). The third price difference comes from the comparison of housing units
before (year 1) and after (year 2) the switching.
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(a) Coal-to-Gas-Fired Plant X

(b) Coal-Fired Plant Z

Figure A7: Downwind/Upwind Near Coal-to-Gas/Near Coal Triple Differences Design

Notes: The top figure (panel a) depicts the spatial assortment of houses around a coal-to-gas-fired power
plant X, before (left-hand side) and after (right-hand side) the switching. The bottom figure (panel b)
depicts the spatial assortment of houses around a coal-fired power plant Z, that did not switch, before
(left-hand side) and after (right-hand side) power plant X switched to gas. In this triple differences design,
the first price difference comes from the comparison of housing units inside the gray area (downwind X),
and housing units at the opposite (upwind X). The second price difference comes from the comparison of
houses that are located near power plant X, and houses that are located near power plant Z. The third price
difference comes from the comparison of housing units before (year 1) and after (year 2) the switching.
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Figure A8: Property Prices of Homes Near Treated and Control Plants During 2009

Notes: Log price residuals from the regression of prices (in logs) on the number of full baths, number of half
baths, number total bedrooms, number total rooms, type of exterior walls, house age, squared feet, weather,
and county, and state × year fixed effects.
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(a) Treatment 1: Shutdown of First Coal-Fired EGU

(b) Treatment 2: Startup of First Gas-Fired EGU

Figure A9: Overview of Common Trends Assumption

Notes: Left-hand side panels use downwind and upwind homes that are located at a distance < 5mi from a
treated plant, while right-hand side panels use downwind and upwind homes that are located at a distance
< 5mi from either a treated (coal-to-gas-fired) or a control (coal-fired) plant.
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Table A1: Probit Estimation Results

Treatment 1 Treatment 2

γ2 Marginal Effects γ2 Marginal Effects

Summer Capacity (MW) -0.082∗∗ -0.0065∗∗∗ -0.077∗∗ -0.0048∗∗

(0.033) (0.002) (0.034) (0.002)
Winter Capacity (MW) 0.081∗∗ 0.006∗∗∗ 0.076∗∗ 0.005∗∗

(0.032) (0.002) (0.033) (0.002)
Plant’s age 0.063∗∗ 0.005∗∗∗ 0.045∗∗∗ 0.003∗∗∗

(0.020) (0.001) (0.011) (0.001)

Obs. 720 720
Pseudo-R2 0.476 0.473
% Correct Predictions 94% 94%

Notes: Probit estimation on the probability of switching fuels using coal-to-gas-fired plants (treated) and
coal-fired plants (controls). All estimations include state fixed effects. Treatment 1 refers to shut down of the
first coal-fired generators. Treatment 2 refers to start up of the first natural gas-fired generators. Clustered
standard errors at the state level in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Figure A10: Robustness Check: Split of Upwind Homes Into Areas A and B
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