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Abstract

Driving restrictions are a common governmental strategy to reduce airborne pollution and traffic

congestion in many cities of the world. Using high-frequency data on air pollution, car trips, and

mass-transit systems ridership, I evaluate the effectiveness of temporary driving bans triggered by

air quality warnings in Santiago, Chile. I employ a fuzzy regression discontinuity design that uses

the thresholds in the air quality index used to announce these warnings as instruments for their

announcement. Results show that these temporary bans reduce car trips by 6-9% during peak

hours, and by 7-8% during off-peak hours. This is consistent with air pollution reductions during

peak hours, and with increases in the use of Santiago’s mass-transit systems during hours the

systems run with excess capacity. Increments in mass-transit ridership uncover the importance

of alternatives modes of transportation in securing the effectiveness of temporary driving bans.
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1. Introduction

This paper evaluates a command-and-control policy aimed at reducing mobile source pol-

lution in Santiago during days of critical air pollution. Heavy air pollution severely affects

health (Chay and Greenstone, 2003; Neidell, 2004; Currie and Neidell, 2005; Knittel et al.,

2016), educational outcomes (Currie et al., 2009; Stafford, 2015), labor supply (Ostro, 1983;

Hausman et al., 1984; Hanna and Oliva, 2015), and productivity (Crocker and Horst, 1981;

Zivin and Neidell, 2012; Chang et al., 2016; Lichter et al., 2017), particularly in develop-

ing countries (Greenstone and Hanna, 2014; Greenstone and Jack, 2015; Hanna and Oliva,

2015). In Latin America alone, air pollution puts at risk the health of more than 80 mil-

lion inhabitants, generating annual losses of about 65 million working days (United Nations

Environment Programme, 2002). Among countries in this region, Chile ranks second after

Mexico in exposure to coarse particulate matter (PM10) in urban areas, and first in exposure

to fine particulate matter (PM2.5), with Santiago ranked as one of the most polluted cities

in the country (World Health Organization, 2014).

As in many metropolitan areas, poor air quality in Santiago is primarily due to mobile

source pollution. Mobile sources account for 60 to 95 percent of the city’s annual PM10

and PM2.5 emissions, and contribute substantially to the concentration of other pollutants,

such as nitrogen oxides (NOX), carbon monoxide (CO), and volatile organic compounds

(VOCs).1 Temporary driving restrictions aimed at curbing this pollution prohibit the driving

in Santiago of a share of light-duty private vehicles based upon the last digits of their

license plates.2 As a deviation from similar schemes in other countries, however, these bans

affect both dirty and clean cars as part of a set of daily mitigation actions put into place

during spikes in air pollution.3 These actions are part of 24-hour preventive measures called

“environmental episodes” (hereafter called “air quality warnings” or simply “episodes”),

1Data from the Register on Pollutant Release and Transfer (Registro de Emisiones y Transferencias de
Contaminantes - RETC)’s website: http://www.retc.cl. Retrieved on March 15, 2017.

2Temporary driving restrictions complement a permanent ban that has restricted dirty cars since 1990.
Further details are given in Section 3.

3Clean cars are those that hold a green sticker, used to designate vehicles that meet specific emissions
standards. These stickers are mandatory self-adhesive sticker added to the windshields of all fuel-efficient
vehicles (e.g., eco-diesel, electric cars, etc.), and vehicles with catalytic converters, which certifies vehicles’
compliance with the emission standards needed to drive in Santiago’s Metropolitan Region. Vehicles earning
a green sticker are brand new vehicles sold after September 1st, 1992, and emitting less than 0.25g/km of
hydrocarbons, less than 2.11g/km of CO, less than 0.62g/km of NOX , and less than 0.125g/km of particulate
matter. Drivers obtain these stickers when getting their vehicle permits, issued after annual mandatory cars
inspections that certify their emissions. During 2005, 70% of Santiago’s vehicles were classified as clean
vehicles, dropping to 30% the number of dirty cars, which were responsible for 54% and 24% of CO and
PM10 emissions from mobile sources, respectively (Atal, 2009). Since then, the number of dirty vehicles
in the city has dropped dramatically. Similar calculations in 2015 numbers reveal that these vehicles are
currently responsible for 3.6% of current CO and 1.6% of current PM10 emissions from mobile sources.
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implemented in Santiago whenever the authorities foresee worrisome levels of the city’s air

quality index. Different index thresholds lead to a three-tier system of episodes (alerts, pre-

emergencies, and emergencies), whose temporary driving bans further tighten the permanent

driving restriction on dirty vehicles, as well as impose new restrictions on clean vehicles.4

Taking advantage of the discontinuities in the issuance of these events, I empirically evaluate

the effectiveness of their short-term driving bans in curbing air pollution and traffic flows.

License plate-based driving restrictions constitute a common governmental strategy to

reduce airborne pollution and traffic congestion in many cities of the world (e.g. Athens,

Beijing, Berlin, Bogota, Mexico City, Milan, New Delhi, São Paulo).5,6 Mixed conclusions

about their causal impact, however, still cast doubt on their effectiveness as an instrument

to improve local air quality. Evidence of drivers bypassing these bans by either shifting

their driving towards hours or days unaffected by the policy, or purchasing a second car to

fully avoid these restrictions, are the main caveats to the effectiveness of this policy (Davis,

2008; Gallego et al., 2013; Bonilla, 2016; Zhang et al., 2017). Notwithstanding, most of the

literature relies on evidence of mobile source pollution while little is known about the impact

of these bans on vehicle flows and alternative modes of transportation.

If driving bans are effective, they would get cars off the roads and push their drivers

towards cleaner and uncrowded transportation modes. An effective policy is, therefore,

expected to produce a measurable impact not only on airborne pollution concentrations but

on car use and mass-transit ridership as well. Simultaneously, a reduction in congestion

because of these bans also could induce unaffected drivers to drive more, offsetting some of

the initial reductions in pollution. This paper sheds light on these effects by approximating

the causal impact that temporary driving bans, triggered by air quality warnings, generate on

hourly pollution, vehicle flows, and mass-transit systems ridership, as a substitute for driving.

While other works already have used a cross-sectional version of similar datasets to evaluate

Santiago’s driving bans (e.g., de Grange and Troncoso (2011)), the present study adds to

the previous literature by adopting a causal framework that informs on the effectiveness of

these bans as a policy mechanism, instead of delivering averages for days with and without

the policy. In this sense, and as far as the author’s knowledge, this is the first paper that

evaluates the impact of driving bans on car trips and mass-transit ridership that prioritizes

causality. As an additional feature, I study this policy over a longer time period in addition

to incorporating the whole set of temporary restrictions into the analysis.

4For instance, clean private vehicles with license plates ending in 0 and 1 may not be used during the
first pre-emergency episode of the year.

5Another common type of driving restriction is the low emission zone program mostly used to reduce
congestion. Under this program, drivers are banned from entering some specific zones of the city.

6I use license plate-based driving restrictions and driving restrictions interchangeably throughout.
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Innovations in Santiago’s policy also help to understand whether temporary driving re-

strictions reduce spikes in air pollution and traffic flows —a question sparsely attended to in

the literature. Useful insights on the efficacy of short-term measures to curb surges in air-

borne pollution are in Mullins and Bharadwaj (2015), who evaluate the impact of Santiago’s

environmental episodes on particulate matter concentrations. While informative, however,

the analysis in Mullins and Bharadwaj (2015) focuses on the entire suite of actions imple-

mented by these episodes, without unraveling the particular role that short-term driving bans

have on improving the city’s air quality. Environmental episodes trigger not only driving

restrictions, but also a set of other actions that target stationary source pollution. Hence, a

deeper understanding of these episodes is necessary for correct advising to policymakers on

devising mechanisms for curbing airborne contamination.

To evaluate the impact of short-term driving bans, I use high-frequency data from 2000 to

2015 on ambient concentrations of four major pollutants from automotive emissions: heavy

and fine particulate matter (PM10 and PM2.5, respectively), carbon monoxide (CO), and

nitrogen oxides (NOX). A nice feature of high-frequency data on the concentration of these

pollutants is the possibility of controlling for atmospheric persistence, widely known to affect

pollution concentrations (Gibson and Carnovale, 2015; Zhang et al., 2017). Additionally, I

look at hourly vehicle trips recorded by counting stations, and at the number of trips taken

in both Santiago’s Metro and Santiago’s bus rapid transit system Transantiago.

I explore causality through a fuzzy regression discontinuity (FRD) design that uses the

air quality index as the variable forcing the probability of an episode. The FRD approach

exploits the arbitrary cutoffs in the air quality index that define the different episodes, and

accounts for potential confounding factors by defining a narrow window around these cutoffs.

I evaluate both the overall episodes’ impact in a pooled FRD design, and their individual

effectiveness in a multiple cutoff FRD design. The time span between the issuance of an

episode and the implementation of its mitigation actions rules out potential unobservables

that could simultaneously affect both the forcing and the outcome variables. Additionally,

the use of high-frequency data on traffic flows allows me to isolate the effects of driving re-

strictions from other mitigation actions triggered by these episodes but targeting stationary

source emissions. The robustness of the data available represents one of the main contribu-

tions of this study.

Results show that temporary driving restrictions effectively keep drivers off the roads

during days of critical air pollution. Specifically, environmental episodes reduce average

vehicle trips by roughly 6-9 percent during peak hours and by 7-8 percent during off-peak

hours, rejecting the existence of a shift in driving towards unrestricted hours. The results

indicate an increase in the daily use of mass-transit systems as well, mostly in Santiago’s sub-
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way and during off-peak hours, suggesting that restricted drivers trend towards substituting

alternative modes of transportation that run with excess capacity. Average pollution con-

centrations also decrease by 1-2 percent, mostly PM10, while the results on hourly maximum

concentrations indicate a 2-3 percent reduction in PM10, PM2.5, and CO. A back-of-the-

envelope calculation based on these results indicates that the impact of this policy on heavy

particulate matter is valued at US$3.1-6.2 billion.

When allowing for heterogeneous effects, the results indicate reductions in hourly average

and hourly maximum vehicle trips, mostly during the most severe episode when temporary

driving bans restrict a significant amount of cars. For days with pre-emergencies (and emer-

gencies), average car trips are curtailed by 5-15 percent during peak-hours, and by 8 percent

during early off-peak hours. Results on average pollution concentrations offer mixed findings,

although further estimations controlling for pollution trends suggest reductions in airborne

concentrations of all the four pollutants, particularly of CO and NOX . The results also indi-

cate a positive impact on mass-transit ridership during the most severe episode and notably

during off-peak hours, which uncover the importance of alternatives modes of transporta-

tion in securing the effectiveness of this policy while shedding light on the significance of

complementary efforts when it comes to curbing local air pollution.

The plan of this paper is laid out as follows. Section 2 reviews the literature on driving

restrictions and highlights the contributions of the present study. Section 3 provides back-

ground details on Santiago’s air quality episodes and driving restrictions, while Section 4

describes the data. Section 5 describes the empirical strategy, Section 6 presents the results

and the robustness checks, and Section 7 concludes.

2. Related Literature

Despite the vast literature on license plate-based driving restrictions and local air quality,

conclusions on their effectiveness are still not conclusive. Eskeland and Feyzioglu (1997)

look at the 1989 Hoy No Circula (HNC) driving restriction in Mexico City, suggesting an

unintentional increase in driving due to a greater use of old cars, congestion effects, and to

the purchasing of a second car after the program implementation. Davis (2008) reinforces

this conclusion by adopting a causal approach on the impact of HNC on local air pollution.

The author finds no evidence of pollution reductions due to the policy, suggesting instead

a shift in driving towards hours or days unaffected by the policy, as well as an increase in

the number of dirty vehicles in the city.7 With a focus on the heterogeneous effects of the

7Salas (2010) revisits Davis (2008)’s estimations and finds that both the sign and significance of the HNC
impact vary greatly with the time window and the length of the time trend polynomial used in the author’s
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policy, Gallego et al. (2013) document a 5-13 percent reduction in CO concentrations due

to HNC, but only among middle-income groups and during the first months of the policy

implementation. These effects vanish after twelve months of the HNC adoption, time after

which the policy increases CO concentrations.

Similar works emphasizing the ineffectiveness of driving bans are Cantillo and

De Dios Ortúzar (2014), Bonilla (2016) and Zhang et al. (2017), analyzing the case of Bo-

gota’s Pico y Placa (PyP) program. PyP was created in 1998 with the intention of reducing

traffic congestion in the city. Empirical evidence on its effectiveness, however, question some

of the PyP outcomes highlighting its long-run failure. For example, Bonilla (2016) analyzes

the impact of different phases of this policy on CO concentrations documenting no evidence

of air quality improvements and, instead, finding an increase in pollution concentrations

during the PyP most drastic phase. Likewise, (Zhang et al., 2017) suggest an increase in

airborne pollution due to PyP, emphasizing the role of the pollutants’ atmospheric chemistry

as one of the mechanisms that explains the failure of this policy.

In spite of the previous evidence, several other works underline the success of driving

bans as a mechanism to curb mobile source pollution. Carrillo et al. (2016) study the effects

of Quito’s Pico y Placa (PyP) program on CO ambient concentrations, suggesting a 9-11

percent reduction due to this policy and, contrary to the findings for Mexico City, claim no

evidence of shifts in traffic towards unrestricted hours. Similar conclusions are in Viard and

Fu (2015) for Beijing’s driving restriction plan. The authors evaluate the every-other-day

and the one-day-a-week restrictions in this city, finding an 18 and 21 percent reduction,

respectively, in particulate matter concentrations due to these policies. These results are

corroborated by Chen et al. (2013) on Beijing’s short-term driving bans imposed during the

2008 Olympic Games. Wolff (2014) obtains similar conclusions for the low-emission zones

(LEZ) program that restricts dirty vehicles from driving on specific roads in Germany. The

author finds a 9 percent reduction in heavy particulate matter concentrations due to this

program, rejecting the option that dirty vehicles drive more outside the LEZ. The success of

these policies, as opposed to the failure of the previous designs, has been linked to factors

such as the population’s general propensity to comply with restrictions, as in the case of

Beijing’s bans (Viard and Fu, 2015), and to specific characteristics of the policy design,

which might foster compliance at a higher degree as in the case of the LEZ’s emission-levels

car differentiation that incentivizes drivers to adopt cleaner vehicles (Wolff, 2014).8

empirical specification. Particularly, smaller time windows around the HNC implementation reveal positive
and significant effects of the program on several airborne pollutants, which exposes a potential behavioral
distinction between short-term and long-term drivers’ adaptation to this policy.

8Barahona et al. (2018) document similar incentives in the case of Santiago’s driving bans. The authors
show that Santiago’s permanent driving restriction pushes the city’s vehicle composition toward vehicles
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In regards to Santiago’s policy, previous evidence suggests a positive relationship be-

tween environmental episodes and air quality improvements (Atal, 2009; Troncoso et al.,

2012; Mullins and Bharadwaj, 2015), as well as discouragement of the use of private cars

in the city (de Grange and Troncoso, 2011). In particular, Atal (2009) finds CO and PM10

reductions during pre-emergencies, while Troncoso et al. (2012) suggest PM10, PM2.5, CO

and NOX reductions during the same episodes, although only during weekdays. Using cross-

sectional evidence on urban traffic flows, de Grange and Troncoso (2011) show that days

with pre-emergency episodes exhibit 5.3 percent fewer cars on the roads, and 3.3 percent

more ridership of the subway.

Using a causal approach, Mullins and Bharadwaj (2015) analyze the effects of Santi-

ago’s episodes on heavy particulate matter concentrations and mortality rates. Combining

a difference-in-difference (DID) approach with propensity score matching, the authors con-

struct a control group of days with similar pollution levels before the policy enforcement,

finding suggestive evidence that environmental episodes lead to a 20 percent short-term re-

duction in PM10 concentrations. This reduction is persistent on subsequent days, which

unveils the long-term persistence of this pollutant in the atmosphere. Their findings also

suggest a reduction in mortality rates of the elderly, especially when comparing days that

follow these announcements.

The present study is similar in spirit to Mullins and Bharadwaj (2015), as it uses a

quasi-experimental approach to derive causal effects of Santiago’s environmental episodes,

although with a focus on the effectiveness of short-term driving restrictions, instead of the

broad set of measures triggered with these episodes. While the use of PM10 as the main

outcome is informative on the overall effect of an episode on airborne pollution, it fails to

provide guidance on the relative effectiveness of each of their protocols. Table 1 indicates

the set of mitigation actions triggered by each of these short-term episodes, which not only

target mobile sources of pollution, but also stationary sources in addition to prohibit domestic

biomass combustion, an important source of particulate matter. The present work attempts

to provide some answers to this puzzle by complementing air pollution data with information

on traffic flows and on alternative modes of transportation. As an extra feature, the use

of high-frequency data on air pollution allows me to control for some of its atmospheric

persistence that affects the dissemination speed of some pollutants (Gibson and Carnovale,

2015). The inclusion of dynamics in the concentration of pollutants also fills an existing gap

in the literature studying pollution concentrations.

[INSERT TABLE 1 ABOUT HERE]

with a green sticker, which are not affected by this policy. Indeed, 56% of 2001 registered cars in Santiago
had a green sticker. These cars now represent 98% of registered cars in the city (INE, 2015).
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3. Background Information

The severity of Chile’s air contamination has prompted implementation of multiple ac-

tions to mitigate air pollution, especially in the metropolitan area of Santiago, home of

nearly half of the country’s population. Santiago is located in the central part of Chile, in

a basin surrounded by mountains with an altitude that ranges between 1,500 and 4,500m.

These mountains prevent strong wind formation, which in combination with thermal inver-

sions reduce the dispersion of pollutants, particularly during colder months (World Health

Organization, 2006).9

3.1 Air Pollution Prevention and Clean-Up Plan

During the late 80s and early 90s, the Special Decontamination Commission of the

Metropolitan Region and the Air Pollution Prevention and Clean-up Plan (PPDA) in Santi-

ago, introduced several mitigation actions aimed at targeting emissions from stationary and

mobile sources (OECD, 2005). Emission standards, tradable permits, and emissions taxes

manage emissions from stationary sources, while the Critical Episodes Management (Gestión

de Episodios Cŕıticos —GEC) program addresses mobile source pollution. This program,

establishes license-plate based driving restrictions on light-duty private cars annually from

April 1st to August 31st. In particular, the GEC employs a permanent (seasonal) license

plate-based restriction that since 1990 prohibits the driving of dirty vehicles in Santiago dur-

ing weekends from 7:30am to 9pm.10 When meteorological conditions prevent the dispersion

of pollutants, and lead to particulate matter concentrations that exceed the PPDA tolerable

ceilings, the GEC complements the permanent prohibition with a short-term driving ban on

both dirty and clean vehicles.11 In these cases, the PPDA considers the issuance of a 24-hour

environmental episode, or air quality warning, which activates a set of short-term actions

aimed at improving air quality in the city, along with recommendations to avoid outdoor

exposure to pollution.12 Since the introduction of this clean-up plan, Santiago’s air quality

has shown progress regarding daily PM10 and CO concentrations (see Figure A2 in Appendix

9Winter goes from April 1st through August 31st.
10Santiago’s metropolitan area is administratively divided in 6 provinces and 52 municipalities. Specifi-

cally, driving bans affect cars circulating in the province of Santiago plus cars driving in the municipalities
of Puente Alto and San Bernardo. In total, 34 municipalities are affected by these bans. Figure A1 (Ap-
pendix A) shows this administrative division. Shaded areas represent the municipalities affected by driving
restrictions.

11Despite that these short-term actions were established by the PPDA during the early 90s, their full
enforcement did not start until 1997 (Mullins and Bharadwaj, 2015).

12The GEC was slightly modified in 2018 with the incorporation of a permanent driving ban on clean
cars registered before 2012. The present study analyzes the impact of the GEC but framed in its original
design.
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A).13 Yet, it is still difficult to anticipate the effectiveness of the PPDA when it comes to

other airborne pollutants such as PM2.5 or NOX , potentially due to the rapid urban growth

that the city experienced during these years (Romero et al., 1999).

Figure 1 plots the hourly station-average concentrations of these pollutants during winter

days without environmental episodes, before episodes, and with episodes. As observed in

Figure 1, hourly pollution concentrations peak twice a day: early in the morning, and late in

the evening. Middle-hand panels, however, show higher readings during days preceding an

episode in combination with a high dispersion, mostly for CO (panel c) and NOX (panel d).

Right-hand panels show high persistence of these conditions on days with episodes, although

with a visible drop late at night.

[INSERT FIGURE 1 ABOUT HERE]

3.2 Air Quality Warnings

The issuance of environmental episodes is based on a pollution forecasting system of San-

tiago’s particulate matter concentrations used by the Ministry of Environment (Ministerio

de Medio Ambiente —MMA) since 2000. This daily forecast, based on a prediction model

called the Cassmassi model, takes place every winter day at 8pm, generating a 24-hour mov-

ing average prediction of PM10 and PM2.5 concentrations for the following day (Perez, 2008;

Salini, 2009).14 These expected concentrations correlate with two indexes of Air Quality from

Particulates (Índice de Calidad del Aire Referido a Part́ıculas —ICAP) which, inspired by

the former US EPA Air Quality Index, were created to easily correlate different levels of

PM10 and PM2.5 on the same scale. These indexes (hereafter called ICAP10 and ICAP2.5,

respectively), transform measures of particulate matter concentrations into a comparable

scale so that the higher the indexes values the greater the particulate concentrations and the

potential health concern.

Different thresholds in the air quality indexes lead to a three-tier label system of environ-

mental episodes (alert, pre-emergency, and emergency) issued whenever the indexes exceed

the thresholds in at least one of the monitoring stations.15 In this case, the Environment

13Though the evident improvement in Santiago’s PM10 concentrations since 1990, their annual average
readings are still well above the WHO guideline levels. These specific guidelines for 24-hour mean concen-
trations are set in 50 µg/m3 and 25 µg/m3 for heavy and fine particulate matter respectively.

14The Cassmassi model is a set of linear equations (one per station) that incorporates particulate mat-
ter concentrations and 24-hour forecasts of meteorological conditions and atmospheric stability in the city
(Saide et al., 2011). See Appendix B for an example of the equations used in the prediction of 24-hour
PM10 concentrations for the Pudahuel station, the unit that generally reports the highest levels of particle
concentrations in the city.

15Since 1997, the Cassmassi model, and the announcement of episodes, were both uniquely based on the
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Superintendent (Superintendencia del Medio Ambiente -SMA) recommends to the Governor

of Santiago’s Metropolitan Area (Intendente) the issuance of an episode for the following

day (starting at midnight). Once this decision is taken, the episode is publicly announced

through either evening newscast TV, radio shows, the SMA’s official website, newspapers,

and smartphone apps, and goes on until early in the morning of the next day (the day with

the episode).

Table 2 displays the thresholds for the PM10- and PM2.5-based ICAP values, their 24-hour

average particulate matter correlations, and the corresponding episode. Forecasts of good

air quality are equivalent to ICAP values below 100, while predictions of regular air quality

relate to ICAP values between 100 and 199. The protocol establishes an air quality episode

whenever the ICAPs reach the 200-threshold. The mildest episode, an alert, is announced for

ICAPs between 200 and 299, equivalent to 195-239µg/m3 PM10 concentrations, and to 80-

109µg/m3 PM2.5 concentrations. The 300-threshold leads to an environmental pre-emergency

that takes place for ICAPs between 300 and 499, equivalent to 240-329µg/m3 and to 110-

169µg/m3 PM10 and PM2.5 concentrations, respectively. Lastly, the 500-threshold leads to

an environmental emergency with ICAPs equivalent to PM10 concentrations ≥ 330µg/m3,

or PM2.5 concentrations ≥ 170µg/m3.

[INSERT TABLE 2 ABOUT HERE]

Despite the policy design considering the ICAP10 and ICAP2.5 as the key variables trig-

gering an episode, previous indications suggest other factors can play a role in this process

as well. In particular, this decision might involve experienced air quality forecasters, while

in some other cases it might be a political decision (Saide et al., 2011). To the extent that

omitted factors can trigger an environmental episode becomes crucial to identify causal ef-

fects, as the air quality indexes would be influencing the probability of an episode instead of

triggering it. Further details on this distinction are offered in Section 5.

3.3 Temporary Driving Restrictions

Air quality episodes trigger several mitigation actions that affect emissions from both

mobile and stationary sources. Discharges from stationary sources are addressed with the

temporary shutdown of industrial facilities and the prohibition of wood-burning stoves, while

temporary driving bans that reinforce the permanent restriction are aimed at targeting

expected concentrations of heavy particulate matter (PM10). Currently, and due to the introduction of the
ICAP index based on PM2.5 concentrations in 2011, air quality episodes can be announced based on the
concentrations of this pollutant as well. In particular, episodes can be issued whenever one of these two
indexes exceeds the tolerable ceilings.
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mobile source emissions. In general, the more severe the episode the stricter their actions,

as shown in Table 1.

Temporary driving restrictions match the permanent ban by prohibiting the driving of

light-duty cars between 7:30am and 9pm.16 Unlike their long-term counterpart, however,

these temporary restrictions can 1) be placed during any day of the week and, 2) affect both

clean and dirty vehicles, that is, with and without green stickers, respectively. Table A1

(Appendix A) displays the historical versions of this policy, along with the number of digits

and the type of cars affected. Nowadays, air quality alerts extend the 2-digit permanent

restriction on dirty vehicles to Saturdays and Sundays; pre-emergencies add two more digits

to the permanent ban on dirty cars and impose a 2-digit restriction on cleans cars, while air

quality emergencies trigger an 8-digit restriction on dirty cars and impose a 4-digit restriction

on clean cars.

Implementing these driving bans requires planning ahead for a full year which license

plate numbers to ban from driving.17 Public support for this policy reached 89%, while

compliance also is believed to be high.18 The national police force task undertakes policy

enforcement, boosting visibility and increasing the number of vehicle inspections during days

with episodes (Atal, 2009). Penalties for violations include fines between US$70 and US$150,

and driving license suspensions (de Grange and Troncoso, 2011).19

4. Data

4.1 Air Quality Episodes

Information on air quality episodes comes from the Operative Unit of Traffic Control

(Unidad Operativa de Control de Tránsito —UOCT) from 2000 to 2015, for a total of 397

episodes (see Table 3). During this period, air quality alerts were the most common occur-

rence with 318 episodes, followed by pre-emergencies with 78. Air quality emergencies are a

rare event with just one single episode declared since 2000.20

16While temporary driving restrictions are always triggered, they are in effect only during peak hours.
Shutdowns of industrial facilities, however, are triggered by the two most critical episodes (pre-emergencies
and emergencies), but constitute a 24-hour mandate.

17See Table A2 in Appendix A for a 2016 example.
18Information from the 2018 National Survey of Environment, available at http://portal.mma.gob.cl.

Retrieved on March 27, 2018.
19The MMA’s 2016 GEC report indicates that 5,578 vehicles were ticketed for driving restriction violations

during morning rush hours in 2016. Most of these violations took place during June and July, time where 16
pre-emergencies and 1 emergency were issued. Most of these violations, however, correspond to infringements
of the permanent restriction.

20In the empirical analysis, emergency episodes will be merged into pre-emergencies.
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[INSERT TABLE 3 ABOUT HERE]

4.2 Air Pollution and Weather Variables

Hourly records on pollution come from the National Information System of Air Quality

(Sistema de Información de Calidad del Aire —SINCA)’s network of monitoring stations

placed in Santiago’s metropolitan area. The SINCA network operates with eleven stations

spread across the city, which hourly collect measures of air quality and weather conditions.

I use records from ten of these stations, which are located in the municipalities affected by

driving restrictions.21 Later in the paper, I use the eleventh station in a robustness analysis.

From the selected stations, I obtain ambient concentrations of four major pollutants

from vehicle emissions from 2000 to 2015: PM10, PM2.5, CO, and NOX . Particulate matter

concentrations are important to study as their concentrations drive the calling of episodes.

Nonetheless, pre-emergency and emergency episodes affect residential and stationary source

pollution as well, which threatens identification of the causal effect of driving bans. Hence,

the examination of two main tailpipe pollutants from vehicle emissions, CO and NOX , con-

stitute a better output to isolate the effectiveness of these bans.22 Descriptive statistics for

these variables are in Table 4 (panel a), while daily average and maximum pollution con-

centrations by season are displayed in Table 5 for winter days with and without episodes.

Average and maximum 24-hour concentrations are substantially lower for all four pollutants

during days without episodes. These concentrations show a steady increase during days with

episodes, except for CO, which shows a decrease in both average and maximum daily con-

centrations during the most critical warning, albeit with only one of these episodes included

in the sample.

[INSERT TABLE 4 ABOUT HERE]

[INSERT TABLE 5 ABOUT HERE]

Data on weather are gathered from several sources from 2003 to 2015. Hourly data on

humidity, temperature, and wind speed come from the SINCA stations, while information on

daily precipitation comes from the National Water Information System (Sistema Nacional

de Información del Agua —SNIA). Combinations of humidity and temperature affect the

21Daily commuting flows in the area move from suburban belts towards the region’s center allowing these
stations to read pollution records from most of the daily economic activity taking place in the region. See
Figure A1 (Appendix A) for the spatial location of these stations (red dots), and the municipalities affected
(shaded area).

22The transportation sector is also a primary source of volatile organic compounds (VOCs) emissions.
However, lack of data prevents the use of VOCs in this work.
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dispersion of pollutants in a similar fashion to winds and precipitations, which carry air

contaminants away from the atmosphere. To approximate the effect of inversions, I consider

the difference between the city’s daily maximum and minimum temperature as a proxy

for changes in temperature. This thermal oscillation is positively related to daily average

temperatures in the sense that warmer days experience less temperature inversion. Higher

thermal oscillations are, therefore, expected to reduce pollution. Descriptive statistics of the

weather covariates are displayed in Table 4 (panel b).

4.3 Urban Flows

Hourly data on vehicle trips come from the Operative Unit of Traffic Control (Unidad

Operativa de Control de Tránsito —UOCT)’s counting stations connected to Santiago’s road

network from 2004 to 2015. These counting stations are placed underground in the city’s

main roads, and therefore, are unable to distinguish between public and private transporta-

tion, or between light-, medium-, and heavy-duty vehicles. The outcome from these stations,

however, represents a useful proxy for light-duty car use whenever unobservable factors af-

fecting this counting occur at random.

Hourly metro trips taken between 2000 and 2015 come from Metro S.A. Santiago’s 103-

km subway consists of 5 lines that operate continuously from 5:30am to midnight during

weekdays, from 6:30am to midnight on Saturdays, and from 8am to midnight on Sundays

and holidays. Before 2007, daily ridership on Santiago’s metro was 640,000 trips on average.

After 2007, however, daily ridership increased drastically to more than 1,750,000 trips due to

the ineffective introduction of Santiago’s new rapid transit bus, Transantiago. By improving

the quality of the city’s public transportation, the Transantiago program aimed at persuading

drivers to get off the roads. Yet, its inefficient route designs and bus schedules led to

opposite results, which translated into higher commuting times and a significant increase in

subway use. Despite these initial inefficacies and after more than 10 years of improvements,

Transantiago remains in place and in daily use by many riders. For this reason, I also

consider data on daily Transantiago ridership between 2007 and 2015, which come from the

Ministry of Transportation and Telecommunications (MTT). Table 6 contains the descriptive

statistics for these three variables and the different years with data available.

[INSERT TABLE 6 ABOUT HERE]

To the extent that effective driving restrictions get drivers off the roads and push them

towards cleaner forms of transportation suggests that mass-transit systems ridership is ex-
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pected to increase during days with driving bans.23 To understand the traffic patterns during

days with and without episodes, Table 7 exhibits 24-hour average and maximum trips by

transportation mode during winter. Consistent with an effective policy, average vehicle trips

decrease for days with air quality episodes. Mass-transit ridership, however, increases only

during alerts and decreases during days with pre-emergencies, which could suggest that

individuals are responding positively to the official recommendations of avoiding outdoor

exposure during days of critical air pollution. In that case, potential increments in daily

mass-transit ridership due to effective driving bans would be attenuated by any avoidance

behavior in days with severe air quality episodes.

[INSERT TABLE 7 ABOUT HERE]

4.4 Indexes of Air Quality from Particulates (ICAPs)

Station-level daily values for ICAP10 and ICAP2.5 come from the MMA. By definition,

the episodes’ issuance takes place whenever one of these indexes exceeds the norm in at

least one of the monitoring stations, in which case the station with the highest daily reading

would be the one driving the process. Hence, I define daily max ICAP values across stations,

particularly ICAP10, as the main variable forcing an episode.

The relationship between daily max ICAPs and the announcement of episodes is displayed

in Figure 2 for winter 2015, which plots the time-series daily max ICAP for days with and

without an episode. Dashed lines depict the different ICAP-thresholds in the episodes’

issuance. From the policy design, days preceding an episode are expected to have daily max

ICAPs above the 200-threshold in at least one of the two indexes (ICAP10 or ICAP2.5). Yet,

a quick examination of Figure 2 indicates this is not always the case: in 2015, there are days

with episodes preceded by days with max ICAPs below the 200-threshold.24 This mismatch

reflects the discretion embedded in the calling of these warnings, as factors other than the

ICAPs can also affect the authorities’ decision of announcing these occurrences.

[INSERT FIGURE 2 ABOUT HERE]

23Drivers also can substitute towards bicycles or motorcycles, which contributes to airborne pollution as
well. Reports on Santiago’s vehicle composition, however, rule out this option. During 2001, there were two
motorcycles per a hundred of light-duty private vehicles driving in Santiago. In 2015, this number increased
to six motorcycles per a hundred of light-duty cars. These increments, however, are identical to the ratios
exhibited in other cities in the country, which lack driving restrictions. For more details, see INE (2001) and
INE (2015).

24The same holds for other years. These graphs are available upon request.
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5. Empirical Strategy

If short-term driving restrictions effectively curb air pollution and traffic counts, such

outcomes should decrease on days with an episode relative to outcomes on days had episodes

not been announced. Given that this control is not available for observational data, previous

works have tackled this issue either by constructing a control group using days before the

policy (the GEC) was established (e.g., Mullins and Bharadwaj (2015)), or by using off-peak

hours of days affected with the policy (e.g., Carrillo et al. (2016)). The first option is not a

possibility in this study as the goal here is evaluating the role of short-term driving bans on

a broad set of air pollutants and traffic counts, for which data are available only since the

2000s. The second approach also is unfeasible given the previous evidence on intertemporal

shiftings of driving towards hours unaffected by driving bans, which makes off-peak hours of

days with episodes a bad control group.

Given Santiago’s policy structure, however, a regression discontinuity that exploits the

arbitrariness in the ICAPs’ discontinuities that assign an episode (a “treatment”), seems

a natural empirical approach to apply in this setting. In particular, a sharp regression

discontinuity (SRD) design that considers one of the ICAP variables (e.g., ICAP10) as the

variable forcing the treatment assignment would derive unbiased causal estimates of the

treatment effect under the identifying assumption that the outcome of interest (i.e., car

trips, air pollution), would have changed smoothly around the ICAP threshold in absence

of an episode.

To test the previous idea, Figure 3 displays the data-driven plot (Calonico et al., 2015a)

of a sharp discontinuity scheme using the two cutoffs that define alerts and pre-emergencies

(jointly with emergencies) on the residuals from the augmented local regression of hourly

average car trips on weather and fixed effects.25 As the jumps in Figure 3 suggest, envi-

ronmental episodes are slightly curtailing the number of cars on the roads relative to days

without episodes. This is consistent with the pattern observed in similar data-driven plots on

hourly average pollution in Figure 4; as illustrated, days without episodes exhibit pollution

records that are positively correlated with the air quality index. Yet, this correlation loses

strength during days with higher index values for which an episode has been announced. In-

deed, the jumps in the linear fits at each side of these thresholds suggest that environmental

25As local RD designs compare observations in a small neighborhood at each side of a relevant cutoff,
controls are generally hard to include because of the reduced number of observations that fit inside this
neighborhood. To avoid this challenge, I follow Hausman and Rapson (2018) approach on augmented local
linear specifications, in which a local linear approach is fitted on the residuals from the (full) regression of the
response variables on weather and seasonality controls. For more details, see Hausman and Rapson (2018).
Linear fits at each side of the cutoffs use sample averages of residuals within optimal disjoint bins based on
Calonico et al. (2015b).
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episodes are sharply reducing airborne concentrations in Santiago.26

[INSERT FIGURES 3 AND 4 ABOUT HERE]

While the policy design establishes the ICAP values as the main variables determining

an episode, the authorities’ discretion embedded in this process prevents this announcement

from being a deterministic function of the ICAPs, which inhibits perfect compliance with the

policy.27 When the probability of treatment does not jump from 0 to 1 at the relevant cutoffs,

the sharp design becomes an impractical option for evaluation as factors other than the

running variable may also affect the treatment assignment, leading to inconsistent estimates

in Figures 3 and 4.

The air quality indexes, however, still can affect the conditional expectation of assignment

to treatment. In this case, causal identification can be tackled by exploiting the discontinuity

in the probability of assignment to treatment in a fuzzy regression discontinuity (FRD)

design (Imbens and Lemieux, 2008) that uses the discontinuities in the running variable as

instruments for the treatment assignment (Angrist and Pischke, 2008). In what follows, I

adopt a FRD scheme that resembles an instrumental variable (IV) estimation by exploring

two specific designs: a pooled FRD approach aimed at combining the treatment effects of

different episodes, and a multi-cutoff FRD setup that exploits the treatment heterogeneity

(Cattaneo et al., 2016) using the distinct PPDA thresholds.

5.1 Pooled Fuzzy Regression Discontinuity Design

While the ICAP thresholds lead to three types of episodes, the standard in the literature

is the score normalization so that a single threshold applies for all units under analysis (i.e.

days with episodes (Cattaneo et al., 2016)). In a pooled design, the treatment is defined

as having an air quality episode during day t, regardless of its type. Formally, let Tt be

the random variable representing the treatment during day t. The probability of issuing an

26As a balance check, Figure C1 (Appendix C) depicts the data-driven plots of similar linear fits at each
side of the thresholds on hourly average wind speed (panel a) and humidity (panel b). As expected, no
discontinuities are evident at the thresholds.

27This implies there could be days at the right of the relevant thresholds in Figures 3 and 4, for which no
episode was issued, or days at the left of these cutoffs that did not have episodes or had a milder episode
than expected. See Figure C2 (Appendix C) for the kernel density estimates of the daily air quality indexes
(ICAP10 and ICAP2.5) during days that precede either alert (panel a) or pre-emergency (panel b) episodes.
Panel (a) shows that days with alerts have ICAP10 values generally below the 200-threshold. This situation
is slightly similar for days with pre-emergencies, as shown in panel (b). The fact that most of the episodes
have been issued with ICAP10 values below their corresponding threshold evidences the fuzzy feature of the
discontinuities in this policy.
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episode during day t is defined to jump as follows:

P (Tt = 1|x̄t−1) =

{
g1(x̄t−1) if x̄t−1 ≥ 0,

g0(x̄t−1) otherwise
(1)

where g(·) is any function with g1(0) > g0(0), and x̄t−1 is the running variable defined as

the daily max ICAP10 during day t− 1, normalized as follows:28

x̄t−1 = ICAP10,t−1 − 200. (2)

From equation (2), days with x̄t−1 values equal or higher than 0 are more likely to have

an episode. I define a flexible first-stage equation of the episodes’ announcement on the

running variable, x̄t−1, as follows:

Tt = α0 + α11[x̄t−1 ≥ 0]t +

p∑
j=1

γljx̄
j
t−1 +

p∑
j=1

γrjx̄
j
t−1 × 1[x̄t−1 ≥ 0]t + Xhδ + νt, (3)

where Tt is equal to 1 if an episode was announced on day t (=0 otherwise); 1[x̄t−1 ≥ 0]t

is an indicator variable taking 1 for normalized ICAP values equal and above 0 during day

t (=0 otherwise); and Xh is a vector of covariates that include current and 24-hour lags

of quartics in humidity, temperature, precipitation, wind speed, and thermal oscillation,

and seasonal fixed effects on year, month of the year (month), day of the week (dow), and

interactions between weekends and hour of the day. The term νt is an error term. I allow the

specification of a flexible polynomial fit in equation (3) below and above the discontinuity,

where the subscripts l and r identify the coefficients predicting the relationship between

the ICAP10 and the treatment below (l) and above (r) the 0-threshold, respectively, and p

indicates the order of the polynomial fit. The magnitude of the discontinuity at the threshold

is indicated by the coefficient α1. The second-stage equations take the following form:

yh = β0 + β1Tt +

p∑
j=1

ηljx̄
j
t−1 +

p∑
j=1

ηrj[x̄
j
t−1 × Tt] + Xhζ + εh, (4)

where yh is the outcome of interest (i.e. log of air pollution, log of traffic volume, log of

urban transit flows) during hour h; εh is an error term, and coefficients ηl and ηr identify a

polynomial fit on the outcome variables before (l) and after (r) the treatment, respectively.

28Since the creation of the GEC, the ICAP10 index was the only metric considered in the issuance of
an episode. For this reason, I consider this index as the running variable throughout all the estimations.
Nonetheless, and due to the potential influence of ICAP2.5, I use this variable as an additional instrument
(additional covariate) all along.
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Due to their boundary properties (Hahn et al., 2001), the preferred specification of equations

(3) and (4) sets p = 1 in an augmented local linear estimation as suggested by Hausman and

Rapson (2018), using bandwidths at each side of the cutoff defined according to Imbens and

Lemieux (2008) and Calonico et al. (2018b).29 Assuming that the discontinuity in equation

(3) induces the discontinuity in equation (4), the episode impact on the outcome variables,

β1, gives the episode weighted local average treatment effect, weighted by the number of

occurrences in each threshold.

5.2 Multi-Cutoff Fuzzy Regression Discontinuity Design

Unlike a pooled FRD, a multi-cutoff FRD uses all the information available by allowing

the running variable to affect the probability of one or more treatments through several dis-

continuities (Cattaneo et al., 2016). As pre-emergency and emergency episodes are grouped

together, I estimate a multi-cutoff FRD with two discontinuities on the running variable: at

the 200-threshold, and at the 300-threshold. I define a generic first-stage multi-cutoff FRD

equation as follows:

TA
t = δ0 + δ11[Alerts]t +

p∑
j=1

θljICAP
j
10,t−1 +

p∑
j=1

θrj1[Alerts]t× ICAP j
10,t−1 + Xhϕ+ υt (5)

where TA
t is the response variable taking 1 if an alert episode was announced during day

t (=0 otherwise); 1[Alerts]t is an indicator variable taking 1 if ICAP10,t−1 ∈ [200, 299] (=0

if ICAP10,t−1 ∈ [0, 199]); Xh is a vector of weather covariates and fixed effects as defined

before; and υt is an error term. This specification includes a flexible polynomial fit at each

side of the discontinuity, where the subscripts l and r identify the coefficients predicting the

relationship between ICAP10,t−1 and the outcomes below and above the first discontinuity,

respectively. I define an expression similar to equation (5) for pre-emergencies, where the

response variable is defined as T P
t , and the indicator 1[Alerts]t is replaced with 1[Pre−em]t

that takes 1 if ICAP10,t−1 ≥ 300 (=0 if ICAP10,t−1 ∈ (200, 299]). For the second-stage

29In particular, I consider a bandwidth of h = 25 with K0 = 2 and K1 = 2 number of bins at each side
of the cutoff based on Imbens and Lemieux (2008), and optimal bandwidths as defined in Calonico et al.
(2018b).
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equation:

yh = λ0+λ1T
A
t + λ2T

P
t +

p∑
j=1

ωljICAP
j
10,t−1

+

p∑
j=1

ωmjICAP
j
10,t−1 × TA

t +

p∑
j=1

ωrjICAP
j
10,t−1 × T P

t + Xhµ+ ξh,

(6)

where the subscripts l, m, and r, identify the coefficients below, in the middle, and above

the two discontinuities, respectively.

In line with the pooled FRD, the preferred specifications of equations (5) and (6) are

the linear specifications with p = 1, and estimated on a small neighborhood around the 200

and 300-thresholds. Aimed at testing for intertemporal shifts in driving, all the estimation

equations consider the outcome variable measured during peak (banned) and off-peak hours.

Whether drivers substitute their driving towards unrestricted hours, the estimated results

should indicate a significant increase in car use during these hours of days with episodes.

Changes in car emissions during these hours, however, may not be as sharply reflected in the

results due to the different lifetimes of pollutants in the atmosphere (Gibson and Carnovale,

2015; Zhang et al., 2017). Factors such as pollutants’ atmospheric chemistry, their formation,

and their lifetime in the air, all might affect the pace whereby eventual reductions in traffic

flows are reflected in ambient pollution concentrations. Failing to control for these factors

could lead to inaccurate conclusions regarding the policy impact on pollution. Because of

this possibility, I include the outcome variable lagged 12 hours in all estimation equations

where the outcome is pollution.30 In addition, I split off-peak hours between early morning

(5-6am) and late evening (9pm-0am) across all the estimations.

Because of the time series characteristic of the outcome variables, I estimate the previous

equations using a Generalized Method of Moments (IV-GMM) procedure that accounts for

serial correlation in the data. This is performed with the Newey-West heteroskedastic- and

autocorrelation-consistent HAC weighting matrix (Barlett kernel). Based upon the analysis

of partial autocorrelations, I define the HAC weighting matrix to be robust to 24-hour lags in

air pollution, to 2-hour lag in vehicle trips, and to 1-hour/1-day lag in mass-transit systems.

All the estimation equations use the ICAP2.5 variable as an additional instrument.

30The analysis of partial autocorrelations on the time series on pollution indicates 24-hour autocorrelations
with values equal or higher than 0.5. Yet, the inclusion of that number of lagged periods as covariates turns
the estimations into a very intensive computational task. For the sake of parsimony, I only include 12-hour
lags on pollution, although the inclusion of 24-hour lags in the weather covariates should capture any effect
lasting for more than 12 hours.
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6. The Effectiveness of Air Quality Warnings and their

Temporary Driving Bans

6.1 The Overall Effectiveness - Pooled FRD

Tables 8 and 9 depict the estimated episode impact on hourly average vehicle trips and

pollution, respectively, from the pooled FRD estimation for peak and off-peak hours. Tables

D1 and D2 (Appendix D) display similar results on hourly maximum car trips and pollution

concentrations.31

[INSERT TABLE 8 ABOUT HERE]

The results in Table 8 suggest air quality episodes effectively push cars off the roads.

These results are consistent and significantly different from zero through all the different

specifications. In particular, the GMM-IV results in Table 8 indicate that an episode reduces

hourly average car flows by 6-9 percent during peak hours. Reductions that are small in

magnitude are expected when pooling the episodes as air quality alerts, the most common

episode, trigger driving bans that only affect dirty vehicles, which constitute a tiny fraction

of light-duty vehicles in the city.32 The results during off-peak hours, however, indicate a

weak reduction for early hours —potentially due to early-bird restricted drivers— and a

strong 8 percent reduction during late hours. Even though these restrictions are placed only

until 9pm, the city’s long commuting hours could maybe explain some of these reductions

late at night. In any case, a decrease in car trips during off-peak hours, or even zero effects,

all constitute evidence against an intertemporal shift in driving towards unrestricted hours.

The results in Table D1 for hourly max flows are consistent with this intuition.

[INSERT TABLE 9 ABOUT HERE]

The results in Table 9 for the pooled FRD on hourly average pollution indicate reductions

in PM10, PM2.5 and CO concentrations during peak hours of days with episodes. Findings

in panel a) strongly indicate the episodes’ announcement reduces hourly average PM10 read-

ings in 1-2 percent. Although small, the consistency of these results through the different

31In addition, Tables D3 and D4 in the Appendix D contain the results of a global polynomial fitted on
these outcome variables.

32Table A3 (Appendix A) contains the expected number of light-duty private vehicles in the Santiago’s
Metropolitan Region affected by this policy. Temporary driving bans during days with alerts are expected
to affect a 5.7% of cars —a number that is close in magnitude to the result in Table 8. Nevertheless —it is
important to note that the results in Table 8 reveal the episodes’ impact on car trips, which is not necessarily
the same as the number of light-duty private vehicles driving the city.
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bandwidths is somewhat an optimistic finding considering the role of this pollutant in the

calling of an episode. Panels b) and c) weakly suggest a .8 and a 1 percent reduction in

PM2.5 and CO, respectively, while no effects are found for NOX . Considering the potentially

complex atmospheric behavior of these pollutants throughout the day, a weak episode impact

on their average concentrations might reflect an omitted pollution trend that is not being

fully captured by the estimation equations. In any case, the results during early off-peak

hours suggest a significant 3-11 percent reduction in airborne concentrations of all the four

pollutants —a plausible scenario in the case of early-bird drivers getting off the roads. Either

way, this situation exposes the importance of evaluating driving bans using data on traffic

flows instead of uniquely relying on air pollution concentrations, as factors other than the

policy could be driving the findings on airborne concentrations. Reductions in pollution

are evident, however, after examining Table D2 on hourly maximum readings. An episode

reduces maximum pollution concentrations of these pollutants in 2-3 percent during peak

hours. The results in Table D2 also reveal a positive impact on PM2.5 concentrations, al-

though this effect is not statistically significant across the several bandwidths. All the results

in Tables 8 and 9 pass the Stock-Wright-Yogo rule of thumb on weak instruments (Stock

et al., 2002).

6.2 Heterogeneous Effects - Multi-Cutoff FRD

Heterogeneous effects of alert and pre-emergency episodes on hourly average (hourly

maximum) car flows and pollution concentrations are depicted in Table 10 and 11 (Tables

D5 and D6 in Appendix D) for peak and off-peak hours, respectively.

The results for car flows in Table 10 indicate that environmental episodes, through their

temporary driving bans, reduce car flows during peak hours of days with alerts and pre-

emergencies. Findings in Table 10 weakly suggest that alert episodes reduce average car

trips in 3-6 percent during off-peak hours, while the results during pre-emergencies strongly

indicate a 5-15 percent reduction for the same hours. Findings for car use during off-peak

hours weakly suggest a 8 percent reduction during early hours of days with pre-emergencies,

and a 5-6 percent decrease during late hours of days with alerts.

[INSERT TABLE 10 AROUND HERE]

Despite the strong results found in Table 10 on the discouragement of car use during pre-

emergencies, these results are smaller than expected (see Table A3). While the scenario in

which some of the restricted drivers bypass the restrictions is always an option, an additional

possibility is that some unrestricted drivers might be taking advantage of a reduced road
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congestion during days with severe driving restrictions, which would lead to more miles

driven (more car trips) by these drivers on days with episodes. Whether this is the case,

congestion effects would be outweighing some of the initial reductions in the number of

car trips avoided by restricted drivers, leading to smaller causal impacts. Although this

is not directly testable, the results in Table D5 on hourly maximum car trips undermine

this possibility. Hourly maximum car trips decrease during the most severe episodes, which

means less car trips (less congestion) around the most saturated counting stations during

days with episodes. Taken together, the results in Table 10 and Table D5 suggest compliance

with the policy, notably during days in which the severe driving bans are in place.

[INSERT TABLE 11 ABOUT HERE]

Results in Table 11 (Table D6) on average (maximum) pollution concentrations offer

mixed findings. Estimates of the episodes’ impact during peak hours in panels a), b), and

c), indicate that alerts reduce hourly average concentrations of PM10, PM2.5, and CO by

around 1-2 percent. These results are consistent and statistically different from zero for all

three specifications. The estimated effects on average NOX concentrations also are negative,

although not statistically significant. When it comes to pre-emergencies, however, the re-

sults show no effects or, as in the case of NOX , positive effects. Whether this is because of

the ineffectiveness of the policy or because of a misspecification of the pollution estimation

equations, the previous results on car flows can offer an answer. Furthermore, a potential

atmospheric persistence during days of heavy contamination is in line with the results ob-

tained during off-peak hours in Table 11. Estimates of the alert impact during early off-peak

hours all are found negative and significant. These episodes sometimes are preceded by a

pre-emergency episode, which in combination with the potential lifetime persistence of these

pollutants, make feasible a scenario in which some of these reductions could be reflecting

lagged effects from the episodes announced the day before. Similar conclusions regarding the

atmospheric persistence of these pollutants can be drawn for the results during late off-peak

hours. The severity of the airborne contamination that motivates the announcement of an

episode in the first place could dictate a slower pollution dissipation even in the presence

of effective mitigation actions. In the next section, an additional differences-in-differences

estimation is used to control for these potentially unobserved pollution trends common to

these stations and omitted from the current FRD analysis.

6.3 Evidence from Mass-Transit Systems Ridership

The previous pooled FRD and multi-cutoff FRD estimations suggest that temporary

driving restrictions, triggered by environmental episodes, effectively reduce the number of
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cars on the roads. Weak evidence suggests these reductions might lead to lower mobile

source pollution as well, although they are not conclusive. To get better insights on the

actual effectiveness of these short-term driving bans, Table 12 displays findings for the FRD

estimations on hourly metro trips, while Table 13 exhibits results on daily trips taken in

Santiago’s bus rapid transit system Transantiago.

[INSERT TABLE 12 ABOUT HERE]

Results in panel a) of Table 12 suggest that environmental episodes increase the number

of metro trips by roughly 16-28 percent during early off-peak hours (5-6am), a time at which

the system runs with excess capacity. These results seem higher than expected given the

estimated effect on car trips (see Table 8). One possibility is that this coefficient could be

capturing not only new demand (restricted drivers), but an intertemporal shift in ridership

by regular users as well. The threat of a crowded service during peak hours of a day with an

episode might force current subway users to travel at early non-rush hours as well. In panel

b), the results indicate a 7-11 percent increase in the number trips taken during peak hours

of days with pre-emergencies. Although no effect is found for peak hours of days with alerts,

middle columns in Table 12 suggest a significant increase in the number of rides taken during

these days at early hours. Pre-emergencies seem to push some metro rides towards late off-

peak hours as well. Overall, the results in Table 12 suggest some drivers are substituting

with the metro during days of temporary driving restrictions, and particularly at non-rush

hours. Consistently, the results in Table 13 indicate some banned drivers could be switching

to the use of Transantiago as well. The results on the multi-cutoff FRD estimator in panel

b) suggest a 12 percent increase in bus rapid transit ridership during days with alerts and a

16 percent increase during pre-emergencies.33

[INSERT TABLE 13 ABOUT HERE]

6.4 Robustness Checks

6.4.1 Placebo Cutoffs

The previous findings are robust to several specifications. First, I run a falsification test

using placebo thresholds in the FRD estimation. In order to set these placebo thresholds

and considering that days with ICAP values equal to or higher than the first threshold all are

expected to receive a treatment (i.e., an episode), I split the baseline sample starting from the

33Estimates using peak and off-peak hours in Transantiago are unfeasible because of the frequency of
data available.
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first cutoff to the left, attempting to avoid possible misspecifications due to the imposition

of zero jumps at the original thresholds. As the first threshold is at 200, the subsample for

the placebo test uses all days in the baseline sample with ICAP10,t−1 values between 0 and

199. To fit the three different placebo cutoffs, x̄∗t−1, I use the following simplified rule:

x̄∗t−1 =


[50, 99] → Alerts,

[100, 149]→ Pre-emergencies,

[150, 199]→ Emergencies

(7)

The results for this placebo test using optimal bandwidths are in Table 14 for the episodes’

impact on car, metro and bus trips, and in Table 15 (Table D7, Appendix D) for the impact

on average pollution during peak hours (off-peak hours). All the results are derived using

the same specifications on the previous FRD equations. The results in Table 14 indicate zero

impact of environmental episodes on vehicle trips and mass-transit systems ridership during

both peak and off-peak hours, regardless of whether these episodes are pooled (panel a) or

not (panel b). Similar results are found for the episodes’ impact on hourly average pollution

during peak (Table 15) and off-peak (Table D7) hours. Taken together, the results for this

falsification test corroborate the validity of the previous findings.

[INSERT TABLE 14 AROUND HERE]

[INSERT TABLE 15 AROUND HERE]

6.4.2 Using a Control Monitoring Station

In this section, I delve deeper into the effectiveness of environmental episodes on pollu-

tion using information on airborne concentrations originated in the SINCA network station

that was omitted from the FRD analysis. This station, called Talagante, and labeled before

as the eleventh station (see Section 4), is located at 38 km. (23 miles) SE of Santiago’s

downtown. Talagante is a municipality that belongs to the Talagante province in Santiago’s

Metropolitan Region, but currently sits outside the GEC plan on environmental episodes.

The existence of an “untreated” station that is close enough to the area treated with this

policy allows for a difference-in-difference (DID) robustness check on pollution. The DID

design considers all the SINCA’s monitoring stations that were part of the previous anal-

ysis as the “treated” stations during days with episodes, and the Talagante station as the

“control” station. Assuming that, conditional on weather covariates and several time fixed

effects, station-specific unobservables affecting pollution trends are uncorrelated with the

episodes’ issuance, the DID estimator should provide a reliable estimation of the episodes’
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impact on pollution concentrations. Additionally, to the extent that atmospheric conditions

around Talagante and the rest of Santiago’s stations are similar, allows the DID design to

remove any lifetime pollution trend common to these stations.34

[INSERT TABLE 16 ABOUT HERE]

Table 16 displays the results for the DID estimation on hourly (peak-hours) average pollu-

tion using a Newey-West estimator that is robust to serial autocorrelation. Panel a) contains

the average treatment effect on the treated (ATT) stations after pooling the episodes, while

panel b) displays the ATT when heterogeneous effects are allowed. All estimations include

weather covariates, and year, month, day-of-the-week, and weekend × hour fixed effects, in

addition to station-fixed effects. The difference between columns (1) and (2) is the addition

of a quadratic time trend in the latter. The results in panel a) consistently suggest that

overall, environmental episodes reduce hourly mobile source pollution in 12-47 percent in

the treated stations relative to the average concentration in Talagante. In particular, en-

vironmental episodes reduce hourly PM10 average concentrations by 12 percent, PM2.5 by

28 percent, CO by 21 percent, and NOX by 47 percent. When the heterogeneity of these

episodes is taken into account, the results in panel b) indicate that air quality alerts and

pre-emergencies (and emergencies) both curb mobile source pollution, with pre-emergencies

curbing these concentrations at a higher proportion. On average, alert episodes reduce PM10

by 9 percent, PM2.5 by 24 percent, CO by 14 percent, and NOX by 45 percent. Similarly,

pre-emergency episodes curb PM10 concentrations by 24 percent, PM2.5 by 43 percent, CO

by 43 percent, and NOX by 50 percent.35 These findings provide suggestive evidence on the

effectiveness of the episodes in curbing pollution concentrations. Moreover, the results in

panel a) of Table 16 represent a simple test on the success of their driving restrictions as

well, as this episode targets pollution mostly from mobile sources. An additional test on this

last point, however, is presented next.

34Figure C3 (Appendix C) displays an overview of the parallel trends assumption for the treated and
control stations for 2011, one of the years in the sample with the highest number of episodes during summer
(pre-treatment) and winter periods. Additional plots are available upon request.

35The magnitude of these estimates, although high, is in line with those in Mullins and Bharadwaj (2015),
who find a 20 percent reduction in PM10. It is important to consider here that, while the DID estimator leads
to an ATT effect, the RD specification leads to a local average treatment effect, or LATE. In other words,
the RD design gives an average treatment effect for those days at the margin of receiving the treatment,
i.e., days with ICAP10 values right around the threshold, and therefore, these two results are not directly
comparable. In fact, recent evidence on FRD models suggests that LATE could be a lower bound of average
treatment effects in cases with two-sided noncompliance (Huang, 2015).
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6.4.3 Mobile vs. Stationary Source Pollution

Despite the legitimacy of using car flows and mass-transit systems ridership in evaluating

the effectiveness of driving bans, a valid concern is that some of the findings in Tables 9 and

11 on pollution concentrations could be driven by some of the additional abatement actions

triggered by the episodes that target stationary sources. A straightforward answer that

rules out this concern is based on the results for alerts in Tables 11 and 16. As mentioned

before, temporary driving restrictions are embedded in all three different episodes, whilst

the shutdown of industrial facilities come into effect only during the most severe episodes of

pre-emergencies and emergencies (see Table 1). Hence, the results in Table 11 (corroborated

later in Table 16) on the impacts of alerts cannot be attributable to the contemporaneous

suspension of these facilities.

In addition to triggering driving bans, however, alert episodes trigger the prohibition of

burning wood and biomass for residential heating, which are an important source of par-

ticulate matter as well. To tease out the effect of the driving bans from this additional

prohibition, I run a FRD analysis using only the information on airborne concentrations

that come from a monitoring station, called Parque O’Higgins, that is the nearest to San-

tiago’s downtown. As in any other city, Santiago’s downtown houses a high percentage of

government buildings and also constitutes the core of commercial activity in the city, mini-

mizing the likelihood of observing industrial facilities or residential homes near this station.

Thus, pollution records captured by this station should reflect pollution emissions mostly

from mobile sources.

[INSERT TABLE 17 ABOUT HERE]

Table 17 contains the FRD results for the estimated episodes impact during peak hours on

hourly pollution concentrations in Parque O’Higgins, using optimal bandwidths. The results

indicate no effects on air pollution during days with alerts, an expected result considering that

this episode increases the number of restricted cars in the city but only during weekends. For

pre-emergencies, instead, the results indicate a strong negative effect, particularly on PM2.5,

CO, and NOX . Significant reductions in airborne concentrations of these pollutants during

pre-emergencies in Santiago’s downtown suggest short-term driving bans, when triggered by

these air quality warnings, effectively curtail pollution.

6.5 Potential Threats to Identification

One concern regarding the validity of the previous results is that factors omitted from

the analysis could bias the estimated impact of driving bans. For instance, drivers could an-
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ticipate future episodes and decide to drive more the day before, biasing the local estimated

impact towards zero. Several factors make this option implausible. First, in order to antic-

ipate a future episode, drivers should perceive air pollution concentrations in concordance

with objective readings, something that has been dismissed in the literature (Berezansky

et al., 2010). Second, and even if objective and subjective indicators were aligned in the

heads of Santiago’s drivers, they would have to distinguish between air pollution levels that

lead to an episode —and the type of episode— and those that do not. Finally, and from the

calendar of restrictions in Table A2, individuals would have to be familiar with the calendar

of restrictions in order to truly anticipate and change their behavior over the threat of be-

ing banned from driving the next day. In any case, and in the unlikely scenario that these

conditions are all met, the estimates in this work would represent a lower bound of the true

effect.

The empirical approach carried out in this work relies on the identifying assumption

that the outcome of interest (i.e., car trips, air pollution), would have changed smoothly

around the ICAP threshold in absence of an episode. Yet, and because of the similarities

between the FRD approach and instrumental variables estimation, a fair concern could lie on

the validity of the exclusion restriction when estimating the FRD. As explained in Section

5, ICAPs are used as instruments of the episode announcement, and therefore, they are

required to satisfy both the relevance and the exclusion restriction. While the policy design

illustrates itself the relevance of the instruments, compliance with the exclusion condition

could be less clear. To clarify this point, it is important to consider that ICAPs on day t− 1

are the instruments for the episodes on day t. A violation of the exclusion restriction would

imply that, after controlling for a rich set of fixed effects, climatic variables, and lagged

values of pollution, today’s ICAPs would have an effect on tomorrow’s pollution through

mechanisms other than the episodes’ announcement. One valid argument could be a long-

lasting persistence of pollution —for more than a day— in the atmosphere, which might be

the case of PM2.5 (Pérez et al., 2000). In this case, and because of the design of the air

quality indexes, the long-lasting persistence of pollution would likely violate the exclusion

restriction in the PM2.5 regression leading to inconsistent estimates. Though there could

be correlation between particulate matter and CO and NOX as well, there are no a priori

reasons to expect that this correlation will prevail after including the set of covariates in the

estimation equations. At the same time, it is even more unlikely that ICAPs will affect car

flows or mass-transit ridership through mechanisms other than the episodes.36 This shows

36One possibility here is that today’s economic activity could affect today’s car flows and mass-transit
ridership as well as future pollution, a relationship that should be captured by the rich set of fixed effects
included in the estimation.
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the importance of evaluating this type of policy on outcomes other than airborne pollution

concentrations.

7. Conclusions

Driving restrictions are a common regulatory mechanism used by many governments

to reduce mobile source pollution and traffic congestion. Empirical evidence on how these

restrictions affect the number of cars in circulation, and so their effects on pollution, is not yet

conclusive. In this study, I provide evidence that driving bans, when issued on a temporary

basis and in conjunction with air quality warnings, represent an efficient mechanism to

curb emissions from mobile sources. I test this idea using evidence from Santiago’s short-

term, license-plate based driving restrictions. Triggered by environmental episodes, these

restrictions are issued whenever the authorities foresee critical levels of air pollution. I

explore the causal impact of these temporary bans with data on mobile source pollution, car

trips and mass-transit systems ridership, in a fuzzy regression discontinuity design that uses

the city’s air quality index as the forcing variable.

Results on the overall impact of these driving bans show a 1-2 percent reduction in mobile

source pollution, and a 6-9 percent reduction in car trips during peak hours. In addition, the

results indicate an increase in mass-transit ridership, particularly during hours at which the

systems run with excess capacity. Findings also reveal a reduction in car trips during off-

peak hours, which rejects the idea of an intertemporal substitution of driving towards hours

unaffected by the policy. Results on the heterogeneous impact of these episodes corroborate

these findings. Car trips are curtailed mostly during the most severe episodes, although at

a smaller rate than expected, which suggests that some unaffected drivers might be taking

advantage of a reduced road congestion during restricted days. Mass-transit systems rider-

ship, however, show significant increases mostly during off-peak hours, implying that some

drivers are switching towards alternative modes of transportations mainly at non-rush hours.

Pollution exhibits a slight increase late at night, although additional evidence suggests these

surges could be explained by the high persistence of these pollutants in the atmosphere

during days with critical airborne contamination.

The empirical exercise in this paper documents that Santiago’s mechanism of tempo-

rary banning cars from driving is an effective policy for an immediate action to counteract

pollution from mobile sources. While banning drivers from the roads can be quite costly

(Blackman et al., 2018), this policy certainly derives some benefits from a reduced airborne

pollution exposure during days with episodes. Miller and Ruiz-Tagle (2019) estimate that

a 10µg/m3 reduction in PM10 concentrations yields 19.9 fewer all-cause infant deaths per
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100,000 infants annually in Santiago. Average PM10 concentrations in our dataset are 85.04

µg/m3 so that a 1-2% decrease due to driving bans yields a 0.85-1.7µg/m3 reduction in PM10

concentrations per episode. Considering that 397 episodes were announced from 2000 to

2015, and assuming a linear relationship between pollution and health, back-of-the-envelope

calculations indicate that the impact of this policy on heavy particulate matter concentra-

tions has yielded approximately 672-1,344 fewer all-cause infant deaths per 100,000 infants

in Santiago. Using Parada-Contzen et al. (2013)’s estimates of the value of a statistical life

in Chile, this mortality benefit is valued at US$3.1-6.2 billion. A more thorough cost-benefit

analysis of this policy should consider the benefits not only from an improved local air quality

but also from a reduced car congestion.

Multiple factors can make this policy effective in Santiago relative to similar designs in

other cities. Santiago’s temporary driving bans affect dirty and clean cars differently. This

distinction has been found to incentivize adoption of lower-emitting vehicles in Santiago

(Barahona et al., 2018) in a fashion similar to other successful driving restrictions designs

such as Germany’s LEZ (Wolff, 2014). At the same time, short-term driving bans —as

opposed to long-term restrictions— might induce different behavioral responses on affected

drivers. Santiago’s policy restricts drivers with a less-than-one probability, which might

mitigate some of the incentives to purchase a second car. Furthermore, the fact that these

restrictions are triggered by air quality warnings increases awareness regarding air quality

conditions as well, which might trigger different reactions on affected (and unaffected) drivers.

The existence of mass-transit systems over a wide extent of the city also helps to safeguard

compliance with the policy as affected drivers face alternative modes of transportations

during restricted days. Finally, it is also possible the success of Santiago’s driving bans could

be reflecting the role of enforcement and cultural habits of the local population. However,

the results found in this study regarding the use of Santiago’s Metro and bus rapid transit,

suggest that the existence of uncrowded mass-transit systems might be a key aspect in

securing the effectiveness of temporary driving bans.
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49(4):1536–1568.

30



Cattaneo, M. D., Titiunik, R., Vazquez-Bare, G., and Keele, L. (2016). Interpreting Regres-

sion Discontinuity Designs with Multiple Cutoffs. The Journal of Politics, 78(4):1229–

1248.

Chang, T., Graff Zivin, J., Gross, T., and Neidell, M. (2016). Particulate Pollution and the

Productivity of Pear Packers. American Economic Journal: Economic Policy, 8(3):141–69.

Chay, K. Y. and Greenstone, M. (2003). The impact of air pollution on infant mortality: ev-

idence from geographic variation in pollution shocks induced by a recession. The quarterly

journal of economics, 118(3):1121–1167.

Chen, Y., Jin, G. Z., Kumar, N., and Shi, G. (2013). The promise of Beijing: Evaluating the

impact of the 2008 Olympic Games on air quality. Journal of Environmental Economics

and Management, 66(3):424–443.

Crocker, T. D. and Horst, R. L. (1981). Hours of Work, Labor Productivity, and Environ-

mental Conditions: A Case Study. The Review of Economics and Statistics, 63(3):361.

Currie, J., Hanushek, E. A., Kahn, E. M., Neidell, M., and Rivkin, S. G. (2009). Does

Pollution Increase School Absences? . Review of Economics and Statistics, 91(4):682–694.

Currie, J. and Neidell, M. (2005). Air pollution and infant health: what can we learn from

california’s recent experience? The Quarterly Journal of Economics, 120(3):1003–1030.

Davis, L. W. (2008). The Effect of Driving Restrictions on Air Quality in Mexico City. The

Journal of Political Economy, 116(1):38–81.

de Grange, L. and Troncoso, R. (2011). Impacts of vehicle restrictions on urban transport

flows The case of Santiago, Chile. Transport Policy, 18(6):862–869.

Eskeland, G. S. and Feyzioglu, T. (1997). Rationing can backfire: the “day without a car”

in Mexico City. The World Bank Economic Review, pages 383–408.

Gallego, F., Montero, J.-P., and Salas, C. (2013). The Effect of Transport Policies on Car

Use: Evidence from Latin American Cities. Journal of Public Economics, 107:47–62.

Gibson, M. and Carnovale, M. (2015). The effects of road pricing on driver behavior and air

pollution. Journal of Urban Economics, 89:62–73.

Greenstone, M. and Hanna, R. (2014). Environmental Regulations, Air and Water Pollution,

and Infant Mortality in India. The American Economic Review, 104(10):3038–3072.

31



Greenstone, M. and Jack, B. K. (2015). Envirodevonomics: A Research Agenda for an

Emerging Field. Journal of Economic Literature, 53(1):5–42.

Hahn, J., Todd, P., and Van der Klaauw, W. (2001). Identification and estimation of

treatment effects with a regression-discontinuity design. Econometrica, 69(1):201–209.

Hanna, R. and Oliva, P. (2015). The effect of pollution on labor supply: Evidence from a

natural experiment in Mexico City. Journal of Public Economics, 122:68–79.

Hausman, C. and Rapson, D. S. (2018). Regression discontinuity in time: Considerations

for empirical applications. Annual Review of Resource Economics, 10:533–552.

Hausman, J. A., Ostro, B. D., and Wise, D. A. (1984). Air Pollution and Lost Work. National

Bureau of Economic Research Cambridge.

Huang, C. (2015). Bounds on treatment effects of encouragement experiments and implica-

tions for fuzzy regression discontinuity analysis. Unpublished Manuscript.

Imbens, G. W. and Lemieux, T. (2008). Regression discontinuity designs: A guide to practice.

Journal of econometrics, 142(2):615–635.

INE (2001). Parque de Veh́ıculos En Circulación 2001. INE, Santiago.

INE (2015). Parque de Veh́ıculos En Circulación 2015. INE, Santiago.

Knittel, C. R., Miller, D. L., and Sanders, N. J. (2016). Caution, Drivers! Children Present:

Traffic, Pollution, and Infant Health. Review of Economics and Statistics, 98(2):350–366.

Lichter, A., Pestel, N., and Sommer, E. (2017). Productivity effects of air pollution: Evidence

from professional soccer. Labour Economics, 48:54–66.

Miller, S. and Ruiz-Tagle, J. C. (2019). Ambient air pollution and infant mortality in

emerging economies: Evidence from santiago, chile. Unpublished Manuscript.

Morales, R. G. (2006). Contaminación atmosférica urbana: Episodios cŕıticos de contami-
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Figures and Tables

Table 1: 2015 Protocols in Environmental Episodes

Episode Protocols

Baseline • Permanent driving restrictions on 40% (weekdays) of dirty vehicles

Alert
• Temporary driving restriction on 20% (weekends) of dirty vehicles

• Prohibition in the use of wood and other biomass for residential heat-
ing

Pre-emergency

• Temporary driving restriction on 60% (all days) of dirty vehicles

• Temporary driving restriction on 20% (all days) of clean vehicles

• Temporary suspension of stationary emissions sources responsable
for 30% of total stationary emissions of particulate matter. This is
equivalent to the shutdown of 750 facilities.

• Elementary and high-school physical education classes and commu-
nity sports are suspended by the Ministry of Education

• Prohibition in the use of wood and other biomass for residential heat-
ing

Emergency

• Temporary driving restriction on 80% (all days) of dirty vehicles

• Temporary driving restriction on 40% (all days) of clean vehicles

• Temporary suspension of stationary emissions sources responsable
for 50% of total stationary emissions of particulate matter. This is
equivalent to the shutdown of 2,461 facilities.

• Recommendation by the Ministry of Education of classes cancella-
tions in elementary schools and high-schools

• Prohibition in the use of wood and other biomass for residential heat-
ing

Notes: Adapted from Mullins and Bharadwaj (2015).
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Figure 1: Hourly Average Pollution by Type of Day

(a) PM10

(b) PM2.5
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Figure 1: Hourly Average Pollution by Type of Day (continued)

(c) CO

(d) NOX

Notes: Observations are station-hour during winter. Line represents the hourly average across stations. Days
with episodes include all three different types of episode. Winter goes from April 1st through August 31st.
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Table 2: Indexes of Air Quality from Particulates (ICAPs)

Values
24-hour PM10 24-hour PM2.5 Air Quality Environmental

Concentration (µg/m3) Concentration (µg/m3) Condition Episode

0 - 99 ≤ 149 ≤ 49 Good -
100 - 199 150 - 194 50 - 79 Regular -
200 - 299 195 - 239 80 - 109 Bad Alert
300 - 399 240 - 284 110 - 139 Critical Pre-emergency
400 - 499 285 - 329 140 - 169 Dangerous Pre-emergency

+500 ≥ 330 ≥ 170 Exceeding Emergency

Notes: Adapted from Morales (2006).

Table 3: Historical Issuance of Environmental Episodes. 2000-2015

Year
Environmental Episodes

Alerts Pre-emergencies Emergencies Total

2000 27 11 0 38
2001 21 4 0 25
2002 22 11 0 33
2003 21 5 0 26
2004 13 2 0 15
2005 7 2 0 9
2006 21 3 0 24
2007 27 4 0 31
2008 21 8 0 29
2009 23 0 0 23
2010 7 2 0 9
2011 19 7 0 26
2012 23 2 0 25
2013 6 0 0 6
2014 22 1 0 23
2015 38 16 1 55

Total 318 78 1 397

Notes: Data from the Unidad Operativa de Control de Tránsito (UOCT).
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Table 4: Descriptive Statistics on Pollution and Weather Variables.

Variables Obs. Mean Std. Dev. Min Max Years

Panel A: Pollutants
PM10 467,012 85.04 65.38 0 945 2000-2015
PM2.5 401,296 40.22 31.08 0 645 2000-2015
CO 513,765 1.39 1.57 0 47.25 2000-2015
NOX 347,622 100.89 103.69 0 1,374 2000-2015

Panel B: Weather Variables
Humidity (%) 400,265 65.94 21.53 0 105 2003-2015
Wind Speed (m/s) 401,719 1.07 0.79 0 17.3 2003-2015
Temperature (◦C) 412,885 11.65 6.29 -33.22 39.77 2003-2015
Thermal Oscillation (◦C) 1,884 11.27 4.84 1.42 24.85 2003-2015
Precipitation (mm) 2,448 1.69 6.58 0 118.74 2003-2015

Notes: Using winter only. Panel A: Observations are station-hour. Particulate matter is in micrograms
per cubic meter, CO is in parts per millions, and NOX is in parts per billions. Panel B: Observations are
station-hour for humidity, wind speed, and temperature; and days for thermal oscillation and precipitation.
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Table 5: Pollution Concentrations During Days with Episodes

Pollutant Type of Episode 24-Hour Average 24-Hour Maximum

PM10

Without Episodes 78.7 149.5

Alerts 120.3 216.1
Pre-emergencies 129.9 228.3
Emergencies 148.1 238.1

PM2.5

Without Episodes 38.1 68.7

Alerts 57.3 98.0
Pre-emergencies 62.4 108.6
Emergencies 79.9 92.8

CO

Without Episodes 1.29 3.03

Alerts 2.08 4.61
Pre-emergencies 2.34 5.33
Emergencies 2.15 4.59

NOX

Without Episodes 90.5 210.5

Alerts 151.2 327.4
Pre-emergencies 159.1 347.7
Emergencies 224.1 356.5

Notes: Data from the UOCT and SINCA. Particulate matter is in micrograms per cubic meter, CO is in
parts per millions, and NOX is in parts per billions.
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Table 6: Descriptive Statistics on Urban Traffic Flows

Trips Obs. Mean Std. Dev. Min Max Years

Vehicles 1,442,526 688.79 697.55 0 4,635 2004-2015
Metro 48,960 66,011.11 58,768.99 0 282,664 2000-2015
Transantiago 1,377 2,974,280.00 956,229.10 688,569 4,468,663 2007-2015

Notes: Using winter only. Observations are station-hours for vehicle flows; hours for metro ridership; and
days for Transantiago trips.

Table 7: Urban Flows During Episodes

Urban Flow Type of Episode 24-Hour Average 24-Hour Maximum

Vehicle Trips

Without Episodes 682 2,946

Alerts 680 2,863
Pre-emergencies 651 2,674
Emergencies 618 2,516

Metro Trips

Without Episodes 65,662 133,099

Alerts 69,113 139,633
Pre-emergencies 61,846 124,843
Emergencies 120,603 265,590

Transantiago Trips

Without Episodes 123,919 -

Alerts 125,262 -
Pre-emergencies 117,648 -
Emergencies 137,549 -

Notes: 24-hour average vehicle trips are obtained by averaging across stations and hours. 24-hour averages
for buses are obtained by dividing daily totals in 24.
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Figure 2: Daily Maximum ICAP10 and ICAP2.5 during Winter 2015

(a) ICAP based on PM10

(b) ICAP based on PM2.5

Notes: Using daily maximum ICAP.
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Figure 3: Discontinuity Plot on Hourly Average Vehicle Trips

Notes: Linear fit during winter days using ICAP10,t−1 as the running variable. The outcome variable are
residuals from the regressions of hourly average vehicle trips (in logs) on weather variables (current and
24-hour lags of quartics in precipitation, humidity, temperature, wind speed, and thermal oscillation), and
year, month, dow, and hour × weekend fixed effects. The linear fit uses binned sample means at each side
of the cutoffs following the mimicking variance evenly-spaced method using spacing estimators (see Calonico
et al. (2015a) for more details).
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Figure 4: Discontinuity Plot on Hourly Average Pollution Concentrations

(a) PM10 (b) PM25

(c) CO (d) NOX

Notes: Linear fit during winter days using ICAP10,t−1 as the running variable. Outcome variables are
residuals from the regressions of hourly average pollution (in logs) on weather variables (current and 24-hour
lags of quartics in precipitation, humidity, temperature, wind speed, and thermal oscillation), and year,
month, dow, and hour × weekend fixed effects. All estimations include 12-hour lags of pollution. The linear
fit uses binned sample means at each side of the cutoffs following the mimicking variance evenly-spaced
method using spacing estimators (see Calonico et al. (2015a) for more details).
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Table 8: Episodes Impact on Hourly Average Vehicle Trips

Episode/Bandwidth
Peak Hours Early Off-Peak Hours Late Off-Peak Hours

k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

1[Episode] -0.098∗∗∗ -0.061∗∗∗ -0.093∗∗∗ -0.026 -0.032 -0.084∗∗ -0.082∗∗ -0.082∗∗ -0.078∗∗

(0.016) (0.017) (0.017) (0.037) (0.044) (0.043) (0.026) (0.028) (0.028)
N 4,897 2,610 3,398 5,119 2,728 3,552 5,119 2,728 3,552

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly average vehicle trips
(in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument. All regressions
include current and 24-hour lags of quartics in humidity, temperature, wind speed, precipitation, and thermal
oscillation, and dummies for year, month, dow, and hour × weekend. Optimal bandwidth estimated using a
common MSE-optimal bandwidth selector based on Calonico et al. (2014), Calonico et al. (2017), and Calonico
et al. (2018a). Standard errors robust to heteroskedasticity and to 2-hour serial correlation in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 9: Episodes Impact on Hourly Average Pollution

Episode/Bandwidth
Peak Hours Early Off-Peak Hours Late Off-Peak Hours

k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

Panel a) PM10:
1[Episode] -0.014∗∗ -0.018∗∗∗ -0.014∗∗ -0.064∗∗∗ -0.059∗∗∗ -0.096∗∗∗ 0.015 0.020 0.015

(0.005) (0.005) (0.005) (0.012) (0.013) (0.013) (0.010) (0.012) (0.010)
N 5,227 2,770 12,323 5,454 2,890 12,858 5,454 2,890 12,858

Panel b) PM25:
1[Episode] -0.008∗ -0.008∗ -0.002 -0.028∗∗ -0.050∗∗∗ -0.047∗∗∗ 0.020∗∗ 0.038∗∗∗ 0.014

(0.005) (0.005) (0.005) (0.010) (0.011) (0.012) (0.009) (0.011) (0.009)
N 5,227 2,770 15,139 5,454 2,890 15,796 5,454 2,890 15,796

Panel c) CO:
1[Episode] -0.015∗∗ -0.014∗∗ -0.008 -0.052∗∗∗ -0.045∗∗∗ -0.068∗∗∗ 0.002 0.008 0.011

(0.005) (0.006) (0.005) (0.014) (0.013) (0.013) (0.011) (0.013) (0.011)
N 5,227 2,770 9,873 5,454 2,890 10,302 5,454 2,890 10,302

Panel d) NOX :
1[Episode] -0.005 -0.009 0.009 -0.052∗∗∗ -0.045∗∗∗ -0.116∗∗∗ -0.006 -0.009 0.005

(0.006) (0.007) (0.006) (0.014) (0.013) (0.017) (0.015) (0.018) (0.013)
N 5,227 2,770 9,528 5,454 2,890 9,942 5,454 2,890 9,942

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly average pollution
concentrations (in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument.
All estimations include 12-hour lags of pollution. Weather variables include current and 24-hour lags of quartics
in humidity, temperature, wind speed, precipitation, and thermal oscillation, and dummies for year, month,
dow, and hour × weekend. Optimal bandwidth estimated using a common MSE-optimal bandwidth selector
based on Calonico et al. (2014), Calonico et al. (2017), and Calonico et al. (2018a). Standard errors robust to
heteroskedasticity and to 24-hour serial correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.

45



Table 10: Alerts and Pre-emergencies Impact on Hourly Vehicle Trips

Episode/Bandwidth
Peak Hours Early Off-Peak Hours Late Off-Peak Hours

k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

1[Alerts] -0.056∗∗∗ -0.027∗∗ 0.005 0.042 0.009 0.003 -0.055∗∗ -0.047∗∗ -0.026
(0.014) (0.013) (0.014) (0.032) (0.033) (0.038) (0.022) (0.023) (0.024)

N 4,897 2,610 1,564 5,119 2,728 1,634 5,119 2,728 1,634
1[Pre-emergencies] -0.052∗∗ -0.099∗∗∗ -0.145∗∗∗ -0.035 -0.014 -0.075∗ -0.015 -0.011 0.002

(0.022) (0.022) (0.012) (0.059) (0.067) (0.039) (0.045) (0.042) (0.042)
N 1,917 945 352 2,003 988 368 2,003 988 368

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly average vehicle trips
(in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument. All regressions
include current and 24-hour lags of quartics in humidity, temperature, wind speed, precipitation, and thermal
oscillation, and dummies for year, month, dow, and hour × weekend. Optimal bandwidth estimated using a
common MSE-optimal bandwidth selector based on Calonico et al. (2014), Calonico et al. (2017), and Calonico
et al. (2018a). Standard errors robust to heteroskedasticity and to 2-hour serial correlation in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table 11: Alerts and Pre-emergencies Impact on Hourly Pollution

Episode/Bandwidth
Peak Hours Early Off-Peak Hours Late Off-Peak Hours

k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

Panel a) PM10:
1[Alerts] -0.014∗∗ -0.019∗∗ -0.023∗∗∗ -0.076∗∗∗ -0.067∗∗∗ -0.073∗∗∗ 0.020∗ 0.021 0.029∗∗

(0.006) (0.006) (0.006) (0.014) (0.014) (0.016) (0.012) (0.014) (0.014)
N 5,227 2,770 3,341 5,454 2,890 3,486 5,454 2,890 3,486
1[Pre-emergencies] 0.016∗ 0.003 0.003 -0.108∗∗∗ -0.101∗∗∗ -0.101∗∗∗ 0.048∗∗ 0.003 0.003

(0.009) (0.006) (0.006) (0.025) (0.015) (0.015) (0.023) (0.017) (0.017)
N 2,013 989 989 2,100 1,032 1,032 2,100 1,032 1032

Panel b) PM25:
1[Alerts] -0.009 -0.011∗ -0.016∗∗ -0.035∗∗ -0.065∗∗∗ -0.059∗∗∗ 0.022∗∗ 0.037∗∗ 0.029∗∗

N 5,227 2,770 3,433 5,454 2,890 3,582 5,454 2,890 3,582
(0.006) (0.006) (0.006) (0.012) (0.012) (0.013) (0.011) (0.012) (0.012)

1[Pre-emergencies] 0.007 -0.0004 -0.0004 -0.103∗∗∗ -0.076∗∗∗ -0.076∗∗∗ 0.032 -0.016 -0.016
(0.009) (0.006) (0.006) (0.025) (0.015) (0.015) (0.021) (0.013) (0.013)

N 2,013 989 989 2,100 1,032 1,032 2,100 1,032 1,032
Panel c) CO:

1[Alerts] -0.015∗∗ -0.013∗ -0.018∗∗ -0.061∗∗∗ -0.053∗∗∗ -0.050∗∗∗ 0.004 0.008 0.011
(0.006) (0.007) (0.006) (0.016) (0.014) (0.014) (0.013) (0.015) (0.014)

N 5,227 2,770 2,467 5,454 2,890 2,574 5,454 2,890 2,574
1[Pre-emergencies] 0.031∗∗∗ 0.006 0.009 -0.062∗∗ -0.041∗∗ -0.046∗∗∗ 0.060∗∗ 0.074∗∗∗ 0.055∗∗

(0.00829) (0.006) (0.006) (0.021) (0.013) (0.014) (0.022) (0.017) (0.017)
N 2,013 989 1,104 2,100 1,032 1,152 2,100 1,032 1,152

Panel d) NOX :
1[Alerts] -0.008 -0.009 -0.012 -0.110∗∗∗ -0.085∗∗∗ -0.112∗∗∗ -0.004 -0.009 -0.002

(0.007) (0.008) (0.008) (0.020) (0.019) (0.022) (0.017) (0.021) (0.021)
N 5,227 2,770 3,115 5,454 2,890 3,250 5,454 2,890 3,250
1[Pre-emergencies] 0.041∗∗∗ 0.021∗∗ 0.022∗∗ -0.120∗∗∗ -0.097∗∗∗ -0.085∗∗∗ 0.066∗∗ 0.038∗ 0.064∗∗∗

(0.010) (0.007) (0.007) (0.032) (0.019) (0.018) (0.032) (0.023) (0.018)
N 2,013 989 736 2,100 1,032 768 2,100 1,032 768

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly average pollution
concentrations (in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument.
All estimations include 12-hour lags of pollution. Weather variables include current and 24-hour lags of quartics
in humidity, temperature, wind speed, precipitation, and thermal oscillation, and dummies for year, month,
dow, and hour × weekend. Optimal bandwidth estimated using a common MSE-optimal bandwidth selector
based on Calonico et al. (2014), Calonico et al. (2017), and Calonico et al. (2018a). Standard errors robust to
heteroskedasticity and to 24-hour serial correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.
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Table 12: Episodes Impact on Hourly Metro Trips

Episode/Bandwidth
Peak Hours Early Off-Peak Hours Late Off-Peak Hours

k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

Panel a) Pooling Episodes:
1[Episodes] -0.024 -0.006 -0.020 0.155∗∗ 0.235∗∗∗ 0.275∗ 0.002 0.050∗ -0.012

(0.017) (0.018) (0.027) (0.071) (0.060) (0.142) (0.028) (0.030) (0.039)
N 4,081 2174 2688 4308 2295 2837 4308 2295 2837

Panel b) Heterogeneous Episodes:
1[Alerts] -0.023 0.010 -0.023 0.250∗∗ 0.302∗∗∗ 0.364∗∗∗ -0.026 0.043 0.0005

(0.019) (0.020) (0.019) (0.083) (0.071) (0.069) (0.035) (0.037) (0.033)
N 4,081 2,174 1,523 4,308 2,295 1,608 4,308 2,295 1,608
1[Pre-emergencies] -0.040 0.067∗∗ 0.105∗∗∗ 0.017 -0.133 0.150 0.140∗∗ 0.133∗∗ 0.153∗∗

(0.026) (0.026) (0.031) (0.098) (0.104) (0.103) (0.059) (0.056) (0.050)
N 1,571 775 683 1,658 818 721 1,658 818 721

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly metro trips (in logs)
using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument. All regressions include
current and 24-hour lags of quartics in humidity, temperature, wind speed, precipitation, and thermal oscillation,
and dummies for year, month, dow, and hour × weekend. Optimal bandwidth estimated using a common MSE-
optimal bandwidth selector based on Calonico et al. (2014), Calonico et al. (2017), and Calonico et al. (2018a).
Standard errors robust to heteroskedasticity and to 1-hour serial correlation in parentheses. Significance levels:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 13: Episodes Impact on Daily Bus (Transantiago) Trips

Episode/Bandwidth
Daily Flows

k = 50 k = 25 Optimal

Panel a) Pooling Episodes:
1[Episodes] 0.058∗ 0.019 0.035

(0.032) (0.039) (0.034)
N 175 98 148

Panel b) Heterogeneous Episodes:
1[Alerts] 0.118∗∗ 0.065 0.121∗∗

(0.042) (0.051) (0.047)
N 175 98 67
1[Pre-emergencies] 0.154∗ 0.279∗∗ 0.159∗

(0.085) (0.100) (0.090)
N 72 36 69

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of
daily bus trips (in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as
an additional instrument. All regressions include current and 1-day lags of quartics in
humidity, temperature, wind speed, precipitation, and thermal oscillation, and dum-
mies for year, month, and dow. Optimal bandwidth estimated using a common MSE-
optimal bandwidth selector based on Calonico et al. (2014), Calonico et al. (2017), and
Calonico et al. (2018a). Standard errors robust to heteroskedasticity and to 1-day serial
correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table 14: Episodes Impact on Traffic Flows Using False Cutoffs

Vehicle Trips Metro Trips Bus Trips

Peak Off-Peak Off-Peak Peak Off-Peak Off-Peak Daily
Hours Early Hours Late Hours Hours Early Hours Late Hours Average

Panel a) Pooling Episodes:
1[Episodes] -1.059 -0.819 -0.917 0.049 6.519 3.621 2.076

(0.957) (0.971) (0.979) (0.730) (6.196) (3.407) (1.727)
N 28,762 30,069 30,069 22,770 24,035 24,035 1,112

Panel b) Heterogeneous Episodes:
1[Alerts] -2.976 -9.215 -4.610 -2.154 -22.43 -0.667 1.958

(2.388) (10.210) (6.212) (4.642) (22.99) (9.686) (1.551)
N 20,741 21,683 21,683 22,837 24,108 24,108 1,543
1[Pre-emergencies] 1.222 2.989 -0.333 3.847 -1.378 9.036 -1.851

(0.758) (3.164) (1.648) (3.366) (5.016) (9.865) (1.984)
N 14,159 14,797 14,797 5,982 6,314 6,314 356

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly average vehicle
trips (in logs) using optimal bandwidths. Standard errors robust to heteroskedasticity and to 2-hour serial
correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 15: Episodes Impact on Hourly Average Pollution Using False Cutoffs

PM10 PM2.5 CO NOX

Panel a) Pooling Episodes:
1[Episodes] -0.068 0.081 0.027 0.276

(0.177) (0.207) (0.206) (0.274)
N 24,643 29,157 35,549 35,549

Panel b) Heterogeneous Episodes:
1[Alerts] 0.105 0.006 0.093 0.389

(0.214) (0.210) (0.237) (0.338)
N 29,174 29,157 35,549 35,549
1[Pre-emergencies] 0.255 0.301 0.265 0.625

(0.190) (0.202) (0.176) (0.401)
N 8,606 8,606 9,020 14,172

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions
of peak hourly pollution concentrations (in logs) using optimal bandwidths. Standard
errors robust to heteroskedasticity and to 24-hour serial correlation in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

49



Table 16: DID Estimation Using Talagante as a Control Station

PM10 PM2.5 CO NOX

(1) (2) (1) (2) (1) (2) (1) (2)

Panel a) Pooling Episodes:
1[Treated] × 1[Episodes] -0.120∗∗ -0.119∗∗ -0.285∗∗∗ -0.286∗∗∗ -0.215∗∗∗ -0.213∗∗∗ -0.470∗∗∗ -0.472∗∗∗

(0.044) (0.043) (0.048) (0.047) (0.052) (0.052) (0.059) (0.059)
N 384,125 384,125 414,300 414,300 414,480 414,480 381,100 381,100

Panel b) Heterogeneous Episodes:
1[Treated] × 1[Alerts] -0.092∗ -0.091∗ -0.244∗∗∗ -0.245∗∗∗ -0.144∗∗ -0.142∗∗ -0.447∗∗∗ -0.449∗∗∗

(0.049) (0.049) (0.053) (0.053) (0.058) (0.058) (0.063) (0.063)
1[Treated] × 1[Pre-emergencies] -0.224∗∗ -0.222∗∗ -0.425∗∗∗ -0.426∗∗∗ -0.439∗∗∗ -0.436∗∗∗ -0.501∗∗ -0.503∗∗

(0.093) (0.093) (0.099) (0.098) (0.110) (0.110) (0.153) (0.153)
N 383,068 383,068 412,956 412,956 413,291 413,291 380,291 380,291

Polynomial Time Trend - t2 - t2 - t2 - t2

Notes: Newey-West estimations during peak hours using current and 24-hour lags of quartics in humidity,
temperature, wind speed, precipitation, and thermal oscillation; fixed effects for year, month, dow, and hour
× weekend; and stations fixed effects. Standard errors robust to 24-hour serial correlation. Significance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001

Table 17: FRD Using Santiago’s Nearest Downtown Station Parque O’Higgins

Pollutant PM10 PM2.5 CO NOX

1[Alerts] 0.021 0.025 -0.036 -0.004
(0.028) (0.024) (0.029) (0.032)

N 3,395 3,127 2,597 1,405
1[Pre-emergencies] -0.079 -0.097∗ -0.160∗∗ -0.150∗

(0.0608) (0.0546) (0.0612) (0.0865)
N 905 720 1,340 390

Notes: Local linear GMM estimations of the residuals from the (full) regressions of
hourly (peak hours) pollution concentrations (in logs) using optimal bandwidths. Stan-
dard errors robust to heteroskedasticity and to 24-hour serial correlation in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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A. Supplemental Material

Figure A1: Spatial Location of Santiago’s Monitoring Stations

Notes: Areas affected by driving restrictions in color. Only one monitoring station is outside this
range —the Talagante station. Borders represent municipalities’ limits.
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Figure A2: Daily Average Pollutant Concentrations

(a) PM10

(b) PM2.5
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Figure A2: Daily Average Pollutant Concentrations (continued)

(c) CO

(d) NOX
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Table A1: Number of License Plate Digits Restricted by Permanent and Temporary Driving
Restrictions. 1990-2015

Stage
Type of Day of Permanent Temporary Restrictions

Light Vehicle the Week Restriction Alert Pre-emergency Emergency

1990-1996
Dirty

Weekdays 2 - - -
Weekends 0 - - -

Clean
Weekdays 0 - - -
Weekends 0 - - -

1997-2000 Dirty
Weekdays 2 4 6 8
Weekends 0 2 4 6

Clean
Weekdays 0 0 0 0
Weekends 0 0 0 0

2001-2007 Dirty
Weekdays 2 4 6 8
Weekends 0 2 4 6

Clean
Weekdays 0 0 2 4
Weekends 0 0 2 4

2008-2015 Dirty
Weekdays 4 4 6 8
Weekends 0 2 6 8

Clean
Weekdays 0 0 2 4
Weekends 0 0 2 4

Notes: Permanent and temporary driving restrictions are in place only between 7:30am to 9:00pm and
from April 1st to August 31st. Temporary driving restrictions show the total number of digits restricted
during days with environmental episodes (i.e. number of digits restricted under the permanent restriction
plus additional digits). Dirty = Vehicles without a green sticker. Clean = Vehicles with a green sticker.
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Table A2: 2016 Calendar of Driving Restrictions for Santiago

Type of Restriction Day/Episode Digits Affected

Permanent Restriction

Monday 3-4-5-6
Tuesday 7-8-9-0

Wednesday 1-2-3-4
Thursday 5-6-7-8

Friday 9-0-1-2

Temporary Restrictions

First Episode 0-1
Second Episode 2-3
Third Episode 4-5
Fourth Episode 6-7
Fifth Episode 8-9

Notes: Permanent restrictions affect dirty vehicles only.
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Table A3: Expected Percentage of Light-Duty Private Cars Affected by Restrictions Over
2001-2015.

Years
Permanent Restriction

Temporary Restrictions

Alerts Pre-emergencies Emergencies

Clean Cars Dirty Cars Clean Cars Dirty Cars Clean Cars Dirty Cars Clean Cars Dirty Cars

2001 - 8.83 - 26.49 22.34 44.15 44.68 61.82
2002 - 8.22 - 24.65 23.57 41.08 47.14 57.51
2003 - 7.68 - 23.03 24.64 38.39 49.29 53.75
2004 - 6.89 - 20.68 26.21 34.47 52.43 48.25
2005 - 5.94 - 17.82 28.12 29.71 56.24 41.59
2006 - 7.03 - 21.08 25.94 35.14 51.89 49.19
2007 - 3.10 - 9.30 33.80 15.51 67.59 21.71
2008 - 4.82 - 7.24 35.18 14.47 70.35 19.30
2009 - 3.81 - 5.72 36.19 11.43 72.38 15.24
2010 - 2.51 - 3.76 37.49 7.52 74.99 10.02
2011 - 1.99 - 2.99 38.01 5.97 76.02 7.96
2012 - 1.60 - 2.40 38.40 4.80 76.80 6.40
2013 - 1.32 - 1.98 38.68 3.96 77.36 5.28
2014 - 1.07 - 1.60 38.93 3.20 77.87 4.26
2015 - 0.87 - 1.30 39.13 2.61 78.26 3.48

Average 2.19 5.67 25.97 45.97

Notes: Considering estrictions placed during both weekdays and weekends. Calculations are based on the
number of clean and dirty light-duty private cars registered in Santiago’s Metropolitan Area, retrieved
from the Annual Reports on Road Vehicles (Anuario del Parque Vehicular de Veh́ıculos en Circulación)
available at http://ine.cl.
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B. Example of the Cassmassi Forecast Model

The following equation describes the weights used by the Cassmassi model to forecast PM10 concentra-

tions in the Pudahuel station:

yt+1 = 39.4νt + 0.33yt + 2.06xt + 0.21ht − 21.7 (8)

where yt+1 is the expected 24-hour moving average of PM10 on day t+1; νt is the forecasted atmospheric

stability on day t taking discrete values from 1 to 5; yt is the 24-hour moving average of PM10 measured

on day t at 10:00am (local time); xt is the temperature (◦C) of the 925 hPa level registered in the weather

station Santo Domingo (located at 80km west of Santiago) at 12:00pm UTC on day t, and ht is 24-hour

change in height measured at 500 level registered in Santo Domingo on day t at 12:00pm UTC. The inclusion

of xt and ht as part of the equations in the Cassmassi model are intended to control for the strength of

thermal inversions in Santiago (Perez, 2008).
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C. Additional Plots

Figure C1: Discontinuity Plot on Hourly Average Weather

(a) Wind Speed

(b) Humidity

Notes: Linear fit during winter days using ICAP10,t−1 as the running variable. The linear fit uses binned
sample means at each side of the cutoffs following the mimicking variance evenly-spaced method using spacing
estimators (see Calonico et al. (2015a) for more details).
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Figure C2: Air Quality Index Densities During Episodes

(a) Alerts (b) Pre-emergencies

Notes: Densities of the daily max air quality indexes during day t− 1. Using an Epanechnikov kernel, with
a 22.88 and a 26.52 bandwidth for alerts and pre-emergencies, respectively.
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Figure C3: Overview of the Parallel Trends Assumption

(a) PM10

(b) PM2.5
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Figure C3: Overview of the Parallel Trends Assumption (continued)

(c) CO

(d) NOX

Notes: Observations are hours during 2011. Plots in panels a), b), and d) use a different y-axis scale for
summer and winter.
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D. Additional Estimations

Table D1: Episodes Impact on Hourly Max Vehicle Trips

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

Bandwidth k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

1[Episodes] -0.054∗∗ -0.025 -0.051∗∗∗ 0.010 0.042 0.027 -0.029 -0.069∗ -0.050∗∗

(0.019) (0.021) (0.015) (0.045) (0.056) (0.034) (0.029) (0.035) (0.023)
N 4,897 2,610 9,751 5,119 2,728 10,193 5,119 2,728 10,193

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly max vehicle trips
(in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument. All regressions
include current and 24-hour lags of quartics in humidity, temperature, wind speed, precipitation, and thermal
oscillation, and dummies for year, month, dow, and hour × weekend. Standard errors robust to heteroskedasticity
and to 2-hour serial correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table D2: Episodes Impact on Hourly Max Pollution

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

Bandwidth k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

Panel a) PM10:
1[Episodes] -0.029∗∗∗ -0.022∗∗ -0.019∗∗ -0.050∗∗ -0.049∗∗ -0.086∗∗∗ -0.002 -0.007 -0.012

(0.007) (0.008) (0.007) (0.017) (0.016) (0.016) (0.014) (0.015) (0.014)
N 5,227 2,770 11,603 5,454 2,890 12,107 5,454 2,890 12,107

Panel b) PM25:
1[Episodes] -0.022∗∗ -0.020∗∗ -0.012∗ 0.008 -0.007 -0.013 0.009 0.046∗∗ 0.013

(0.008) (0.008) (0.007) (0.014) (0.015) (0.015) (0.014) (0.015) (0.013)
N 5,227 2,770 10,402 5,454 2,890 10,854 5,454 2,890 10,854

Panel c) CO:
1[Episodes] -0.031∗∗∗ -0.027∗∗∗ -0.021∗∗ -0.027∗ -0.039∗∗ -0.036∗∗ -0.009 0.002 0.0001

(0.007) (0.008) (0.007) (0.016) (0.015) (0.015) (0.015) (0.017) (0.014)
N 5,227 2,770 8,792 5,454 2,890 9,174 5,454 2,890 9,174

Panel d) NOX :
1[Episodes] -0.018∗∗ -0.018∗∗ -0.007 -0.078∗∗∗ -0.073∗∗∗ -0.124∗∗∗ -0.044∗∗ -0.053∗∗ -0.014

(0.008) (0.009) (0.008) (0.021) (0.020) (0.020) (0.017) (0.022) (0.017)
N 5,227 2,770 10,402 5,454 2,890 10,854 5,454 2,890 10,854

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly max pollution
concentrations (in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument.
All estimations include 12-hour lags of pollution. Weather variables include current and 24-hour lags of quartics
in humidity, temperature, wind speed, precipitation, and thermal oscillation, and dummies for year, month, dow,
and hour × weekend. Standard errors robust to heteroskedasticity and to 24-hour serial correlation in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table D3: Episodes Impact on Hourly Average Vehicle Trips - Global Polynomial Approach

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

(1) (2) (3) (1) (2) (3) (1) (2) (3)

1[Episodes] -0.014∗∗ -0.307∗∗∗ -0.536∗∗∗ 0.004 -2.493∗∗ -3.981∗∗ -0.001 -1.478∗∗ -2.258∗∗

(0.005) (0.089) (0.135) (0.014) (0.934) (1.613) (0.008) (0.498) (0.770)
N 91752 91752 91752 95913 95913 95913 95913 95913 95913

Estimation OLS IV IV OLS IV IV OLS IV IV
Funct. Form Linear Linear Quad Linear Linear Quad Linear Linear Quad

Notes: GMM-IV estimations using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional in-
strument. All regressions include current and 24-hour lags of quartics in humidity, temperature, wind speed,
precipitation, and thermal oscillation, and dummies for year, month, dow, and hour × weekend. Standard er-
rors robust to heteroskedasticity and to 2-hour serial correlation in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

Table D4: Episodes Impact on Hourly Average Pollution - Global Polynomial Approach

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Panel a) PM10:
1[Episodes] -0.001 -0.039 -0.077 -0.041∗∗∗ -0.207 -0.400 -0.010 -0.121 -0.248

(0.004) (0.050) (0.076) (0.007) (0.346) (0.543) (0.007) (0.203) (0.326)
N 99,965 99,965 99,965 104,308 104,308 104,308 104,308 104,308 104,308

Panel b) PM25:
1[Episodes] 0.001 0.009 -0.033 -0.036∗∗∗ 0.122 -0.026 -0.011∗ 0.074 -0.016

(0.004) (0.050) (0.079) (0.007) (0.349) (0.547) (0.006) (0.207) (0.336)
N 99,914 99,914 99,914 104,255 104,255 104,255 104,255 104,255 104,255

Panel c) CO:
1[Episodes] -0.005 0.018 -0.016 -0.023∗∗ 0.046 -0.185 -0.015∗∗ 0.028 -0.114

(0.004) (0.046) (0.066) (0.007) (0.316) (0.479) (0.006) (0.197) (0.292)
N 99,989 99,989 99,989 104,333 104,333 104,333 104,333 104,333 104,333

Panel d) NOX :
1[Episodes] -0.002 -0.0001 0.012 -0.062∗∗∗ -0.053 0.048 -0.010 -0.031 0.029

(0.004) (0.057) (0.084) (0.009) (0.390) (0.618) (0.008) (0.238) (0.369)
N 99,951 99,951 99,951 104,293 104,293 104,293 104,293 104,293 104,293

Estimation OLS IV IV OLS IV IV OLS IV IV
Funct. Form Linear Linear Quad Linear Linear Quad Linear Linear Quad

Notes: GMM-IV estimations using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instru-
ment. All estimations include 12-hour lags of pollution. Weather variables include current and 24-hour lags
of quartics in humidity, temperature, wind speed, precipitation, and thermal oscillation, and dummies for year,
month, dow, and hour × weekend. Standard errors robust to heteroskedasticity and to 24-hour serial correlation
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table D5: Alerts and Pre-emergencies Impact on Hourly Max Vehicle Trips

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

Bandwidth k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

1[Alerts] -0.019 0.030∗ -0.001 0.002 0.008 0.057 -0.021 -0.029 -0.001
(0.016) (0.016) (0.015) (0.038) (0.040) (0.037) (0.025) (0.029) (0.028)

N 4,897 2,610 994 5,119 2,728 1,038 5,119 2,728 1,038
1[Pre-emergencies] -0.045∗∗ -0.060∗∗ -0.093∗∗∗ 0.005 0.020 -0.056 -0.003 -0.009 -0.054

(0.021) (0.023) (0.020) (0.060) (0.065) (0.042) (0.043) (0.040) (0.042)
N 1,917 945 352 2,003 988 368 2,003 988 368

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly max vehicle trips (in
logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument. All regressions include
current and 24-hour lags of quartics in humidity, temperature, wind speed, precipitation, and thermal oscillation,
and dummies for year, month, dow, and hour × weekend. Optimal bandwidth estimated using a common MSE-
optimal bandwidth selector based on Calonico et al. (2014), Calonico et al. (2017), and Calonico et al. (2018a).
Standard errors robust to heteroskedasticity and to 2-hour serial correlation in parentheses. Significance levels:
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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Table D6: Alerts and Pre-emergencies Impact on Hourly Max Pollution

Peak Hours Early Off-Peak Hours Late Off-Peak Hours

Bandwidth k = 50 k = 25 Optimal k = 50 k = 25 Optimal k = 50 k = 25 Optimal

Panel a) PM10:
1[Alerts] -0.029∗∗ -0.019∗∗ -0.026∗∗ -0.056∗∗ -0.056∗∗ 0.006 0.00003 -0.011 0.006

(0.009) (0.009) (0.009) (0.020) (0.019) (0.018) (0.017) (0.017) (0.018)
N 5,227 2,770 3,341 5,454 2,890 3,486 5,454 2,890 3,486
1[Pre-Emergencies] 0.027∗∗ -0.002 -0.009 -0.090∗∗ -0.048∗∗ -0.059∗∗ 0.049∗ 0.004 -0.002

(0.011) (0.008) (0.008) (0.029) (0.019) (0.019) (0.029) (0.018) (0.018)
N 2,013 989 989 2,100 1,032 1,032 2,100 1,032 1,032

Panel b) PM25:
1[Alerts] -0.024∗∗ -0.025∗∗ -0.034∗∗∗ 0.006 -0.020 -0.017 0.008 0.042∗∗ 0.029∗

(0.009) (0.010) (0.010) (0.016) (0.017) (0.019) (0.016) (0.017) (0.018)
N 5,227 2,770 3,341 5,454 2,890 3,486 5,454 2,890 3,486
1[Pre-Emergencies] 0.014 -0.009 0.033∗∗∗ -0.017 -0.002 0.046∗∗ 0.028 -0.020 0.007

(0.011) (0.008) (0.007) (0.029) (0.020) (0.021) (0.028) (0.019) (0.016)
N 2,013 989 736 2,100 1,032 768 2,100 1,032 768

Panel c) CO:
1[Alerts] -0.033∗∗∗ -0.027∗∗ -0.032∗∗∗ -0.034∗ -0.054∗∗ -0.047∗∗ -0.007 -0.001 0.005

(0.009) (0.009) (0.008) (0.018) (0.017) (0.017) (0.018) (0.019) (0.019)
N 5,227 2,770 2,467 5,454 2,890 2,574 5,454 2,890 2,574
1[Pre-Emergencies] 0.038∗∗ 0.003 0.005 -0.036 0.041∗ 0.026 0.056∗∗ 0.083∗∗∗ 0.065∗∗∗

(0.012) (0.008) (0.009) (0.032) (0.023) (0.023) (0.028) (0.019) (0.019)
N 2,013 989 1,035 2,100 1,032 1,080 2,100 1,032 1,080

Panel d) NOX :
1[Alerts] -0.023∗∗ -0.022∗∗ -0.029∗∗ -0.098∗∗∗ -0.084∗∗∗ -0.095∗∗∗ -0.048∗∗ -0.059∗∗ -0.056∗∗

(0.010) (0.010) (0.010) (0.024) (0.024) (0.025) (0.020) (0.025) (0.024)
N 5,227 2,770 3,433 5,454 2,890 3,582 5,454 2,890 3,582
1[Pre-Emergencies] 0.051∗∗∗ 0.021∗∗ 0.021∗∗ -0.069∗ 0.005 0.004 0.030 0.041 0.036

(0.013) (0.010) (0.010) (0.036) (0.025) (0.025) (0.039) (0.030) (0.031)
N 2,013 989 989 2,100 1,032 1,032 2,100 1,032 1,032

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of hourly max pollution
concentrations (in logs) using ICAP10,t−1 as the running variable and ICAP2.5,t−1 as an additional instrument.
All estimations include 12-hour lags of pollution. Weather variables include current and 24-hour lags of quartics
in humidity, temperature, wind speed, precipitation, and thermal oscillation, and dummies for year, month,
dow, and hour × weekend. Optimal bandwidth estimated using a common MSE-optimal bandwidth selector
based on Calonico et al. (2014), Calonico et al. (2017), and Calonico et al. (2018a). Standard errors robust to
heteroskedasticity and to 24-hour serial correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.001.
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Table D7: Episodes Impact on Hourly Pollution Using False Cutoffs

PM10 PM2.5 CO NOX

Early Late Early Late Early Late Early Late

Panel a) Pooling Episodes:
1[Episodes] 1.056 -1.342 0.652 -1.087 -0.618 -0.560 1.457 -0.987

(1.064) (1.116) (0.928) (1.000) (1.141) (0.743) (1.620) (1.066)
N 25,715 25,715 30,425 30,425 37,096 37,096 37,096 37,096

Panel b) Heterogeneous Episodes:
1[Alerts] 0.851 -1.169 1.739 -1.173 0.400 -0.179 -1.692 -0.477

(1.463) (1.085) (1.459) (1.075) (1.470) (0.675) (3.566) (0.906)
N 30,443 30,443 30,425 30,425 37,096 37,096 37,096 37,096
1[Pre-Emergencies] -0.010 0.405 0.095 0.818 0.466 0.737 3.778 2.178

(0.584) (0.484) (0.462) (0.684) (0.492) (0.607) (2.494) (1.564)
N 8,979 8,979 8,979 8,979 9,411 9,411 14,787 14,787

Notes: Local linear GMM-IV estimations of the residuals from the (full) regressions of off-peak hourly
pollution concentrations (in logs) using optimal bandwidths. Standard errors robust to heteroskedasticity
and to 24-hour serial correlation in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.
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