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Abstract

Extractive industries are often challenged by nearby communities due to their

environmental and social impacts. If proximity to resource extraction sites represents

a disamenity to households, the opening of new mines should lead to a decrease in

housing prices. Using evidence from more than 6,000 new extraction sites in Chile,

this study addresses whether the heavy environmental and social impacts of digging

activities outweigh their local economic benefits to the housing market in emerging

economies. Findings from a spatial difference-in-difference nearest-neighbor matching

estimator reveal that households near mining activity get compensated with lower

rental prices, mostly in places with high perceptions of exposure to environmental

pollution. Further analysis suggests that this compensation is lower among new

residents of mining towns, which constitutes evidence of a taste-based sorting across

space. Results in this study bring to light the need of incorporating welfare effects

of potential social and environmental disruptions in future studies addressing the

economic impact of new mining operations.
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1. Introduction

More than 3.5 million people around the world live in places rich in oil, gas and minerals

(World Bank, 2018b). Whether these resources are a threat to human health and environ-

mental quality rather than an economic opportunity remains yet an open research question.

Common extraction activities, such as blasting, hauling, and drilling, release high levels of

both particulate matter and gaseous pollutants such as sulfur dioxide (SO2), nitrogen oxides

(NOX), and carbon monoxide (CO), all contributing to local air pollution. Water quality

is also threatened. The high concentration of chemicals and materials in land surrounding

extraction sites, in combination with large amounts of water from mining processes, in-

crease the likelihood of mine discharges into streams and rivers. Tailing management, noise,

and visual pollution are also part of the environmental impacts of these activities, which

in combination with soil degradation can threaten both agricultural production and human

settlement.1

Many resource-rich economies suffer from corruption and a general disruption of social

activities as well. Resource rents can induce rent-seeking, clientelism, and patronage among

local politicians (Gylfason, 2001; Robinson et al., 2006; Kolstad and Søreide, 2009), leading

to poor economic performances of resource-rich economies (Mehlum et al., 2006). These

places are also described as areas with low welfare indicators (Bulte et al., 2005), and high

social distortions such as changes in the local population (Petrova and Marinova, 2013),

induced displacement and resettlement (Chakroborty and Narayan, 2014), pressures on local

infrastructure (Mason et al., 2015; Petrova and Marinova, 2013), low levels of trust (Petrova

and Marinova, 2013), increased criminal activity (James and Smith, 2017; Komarek, 2018),

truck accidents (Graham et al., 2015; Muehlenbachs et al., 2017), and increased prostitution

and sexually transmitted diseases (Pegg, 2006; Komarek and Cseh, 2017).

When proximity to extractive industries represents a disamenity to households, new ex-

1See more in Milu et al. (2002); Kitula (2006); Bebbington et al. (2008); Kemp et al. (2010).
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traction activity should generally lead to a decrease in the price of neighboring houses.2 This

paper addresses this idea studying whether the heavy environmental and social impacts of

extractive activities outweigh their local economic benefits on the housing market. Despite

the wide variety of studies exploring housing market capitalization of proximity to environ-

mental disamenities,3 the empirical understanding of the property value impacts of proximity

to mining sites is still limited. Evidence from previous studies on housing and drilling activ-

ities offers some guidance, although with mixed evidence (Boxall et al., 2005; Weber, 2012;

Gopalakrishnan and Klaiber, 2013; Muehlenbachs et al., 2013a, 2015; Boslett et al., 2016;

Delgado et al., 2016; Jacobsen, 2019). Moreover, digging ore out of the ground, as opposed

to pumping oil or gas to the surface, features pronounced impacts on the ecosystem and

important environmental hazards such as dust and noise emissions, particularly with more

invasive methods such as open-cast operations or surface mining (Williams, 2011). This

paper contributes to this previous literature by approximating the causal impact on rental

prices of proximity to the concentration of digging activities. To the best of the author’s

knowledge, this is the first study on the property value effects of proximity to mining that

uses household-level information prioritizing causality.

This paper uses the case of Chile, one of the fastest-growing countries in Latin America

(World Bank, 2018a). Chile has a substantial mining industry that has strongly contributed

to its economic development, setting the guidelines on mining regulation in many other

emerging economies. While extractive industries account for several local economic benefits

in these countries (Aragon and Rud, 2013; Loayza and Rigolini, 2016), recent social and

environmental movements have increased social opposition to new mines (Bebbington et al.,

2This is particularly true for countries with laxer environmental regulations. Broner et al. (2012) suggest
that countries holding a comparative advantage in polluting industries might have laxer environmental
regulations due their lobbying exerted to prevent the enactment of stringent standards. This is in line with
the 2016 The Economist article titled “From Conflict to Co-operation”, on the mistrust existing among locals
regarding the stringency of environmental impact assessments that are submitted by local mining projects.
Source: From Conflict to Co-operation, The Economist, Online, accessed June 12, 2017.

3See for instance Kohlhase (1991); Mendelsohn et al. (1992); Greenstone and Gallagher (2008); Gamper-
Rabindran and Timmins (2013) on proximity to hazardous waste sites or Superfund sites; Kiel and McClain
(1995a,b) on waste incinerators; Currie et al. (2015) on industrial plants; Gamble and Downing (1982) on
nuclear plants; and Davis (2011) on power plants.
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2008; Urkidi, 2010), raising concerns around the real local benefits of these projects. The case

of Chile provides an opportunity to delve deeper into the net effects of extractive industries

in settings where the social returns from these activities are constantly challenged. In turn,

this work adds to the scarce literature on proximity to environmental disamenities in places

characterized by less stringent environmental regulations, and broadly, to the growing field

of environmental valuation in developing countries (Greenstone and Jack, 2015).

The focus of this paper is on the universe of new resource extraction sites opened in Chile

during 2011 and 2016.4 Using data from the National Service of Geology and Mining, this

study identifies three types of mine openings that constitute three treatments: all-size mine

openings; small, medium and large-scale (conventional) mine openings; and artisanal mine

openings that groups small-scale mines operating under rudimentary conditions.5 Cities

hosting the exclusive opening of one of these sites are part of a treated group of cities. Cities

with no mining records are part of a control group of cities, and locations with mine records

but zero openings are part of a placebo group of cities.6 This information is merged with

repeated cross-sectional data on more than 24,000 households and their rental housing prices.

Rental prices are superior to housing prices in hedonic housing valuation as they reflect the

market’s current valuations of housing attributes instead of combining these valuations with

the market’s expectations about future conditions (Harrison Jr and Rubinfeld, 1978). At the

same time, they show a greater sensitivity to local changes as the rental market exhibits a

faster turnover than the housing market, which tends to be more affected by frictions such as

4This paper avoids a cross-sectional comparison of rental prices between cities with and without mining
due to Chile’s historical mining tradition, which goes back to the 19th century. This situation challenges
identification as it is unfeasible to control for city-level attributes and housing characteristics before the
establishment of the first extraction sites. Instead, the opening of new deposits facilitates a clearer definition
of the event study and the study period, which ultimately allows to proper control for potential differences
across cities before these openings.

5It is important to distinguish artisanal mining from conventional mining due to the potential small
economic impacts of the former relative to large-scale operations, and their less-sustainable production and
management practices that could impose higher net detrimental effects on households. See Section 4 for
more details on the different impacts.

6Chile is administratively divided into 346 communes –or cities- grouped into 15 regions. Comparing
with the U.S. administrative division, cities are equivalent to counties, while regions are the equivalent to
states.
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credit market imperfections and long-term contracts (Rosen and Smith, 1983).7 Nonetheless,

under the holistic understanding that properties for rent are part of a comparable housing

market, these findings can approximate the effects of mining sites on the housing market as

well.8

Two quasi-experimental techniques are used for identification. First, a spatial difference-

in-difference (DID) hedonic price equation compares households in treated cities to house-

holds in control cities before and after the openings.9 A DID estimator improves hedonic

price estimations by reducing any potential bias in marginal willingness-to-pay (MWTP)

calculations that come from time-constant omitted variables or uncontrolled time-varying

implicit prices (Kuminoff et al., 2010). A second approach combines the previous spatial

DID with a nearest-neighbor matching procedure that finds a match for treated houses from

the set of control houses, comparing them before and after the sitings. This spatial DID

nearest-neighbor matching estimator (DIDNNM) uses the distance between a set of covari-

ates unaffected by the treatment to construct a group of comparable houses in control cities,

improving the balance of observables across groups and reducing any potential bias from

observables that confound the original DID specification.

The results strongly suggest that mine openings represent an environmental disamenity to

households. Overall, the concentration of new mines outweighs their local economic benefits

on the housing rental market, leading to a 10-17 percent reduction in monthly rental prices

of nearby houses.10 This represents a marginal willingness to pay of 30-62 USD to avoid

7I am very thankful to an anonymous referee for pointing this out.
8For all the purposes, the study period covers years with low copper prices. Copper prices increased

until 2011, declining afterward until their lowest drop in 2016. Source: Chilean Copper Commission, Online,
accessed July 15, 2018. The effect of this price bust on rental prices is carefully taken into consideration in
the empirical strategy.

9In an ideal setting, effects of proximity to the disamenity would be measured by restricting the sample
to houses that are located within a specific radius of distance. Unfortunately, the available data restrict this
type of analysis. Findings in this study, however, bring to light the net impacts of cities’ concentration of
extraction sites on the value of housing units for rent.

10These results are in line with similar estimates on proximity to disamenities in other developing coun-
tries. For instance, Arimah (1996) estimates that households in Nigeria are willing to pay around 9 percent
of their housing rent in order to live 1 km away from a major landfill boundary, while Deng et al. (2014)
estimate a 12-14 percent increase in the price of properties within 5 km of two polluting power plants in
China after the relocation of these facilities.
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proximity to the concentration of mines, equivalent to a 7-14% of the country’s minimum

wage. Further analysis show that rental price impacts are exacerbated by both the type and

the number of new mines, and by the kind of mining technique.

Given mining’s high pollution potential, this paper also tests for heterogeneous effects

of mine openings at different levels of environmental degradation. With the aim of creating

a tool that integrates environmental valuation with pollution concentrations, environmental

degradation is measured using households’ perceptions of air and water pollution, linked

later to objective measures of environmental quality.11 The results strongly suggest that

the negative rental price impact of new extraction activity is aggravated in places with high

environmental pollution. Namely, the opening of conventional sites constitutes a disamenity

but mostly in areas with high airborne contamination, while the disamenity effect of new

artisanal sites is mostly tied to high levels of water contamination.

Previous research has shown evidence of a taste-based sorting of individuals across space

(Chay and Greenstone, 2005) to the extent that households that downplay social and envi-

ronmental disamenities are likely to sort into less pleasant places, which might add bias to

MWTP measures. This paper tests the existence of sorting by studying heterogeneous effects

among new and old residents of treated and control cities. Evidence of significant differences

in treatment effects among these groups represents a simple test of a preference-based sorting

of households. Findings reveal that the disamenity effect is less critical for new residents

of mining towns, suggesting that households new to these cities are likely minimizing the

disamenity effect.

The remainder of this work proceeds as follows. Section 2 outlines the hedonic price

model, while section 3 details the resource extraction in Chile. Section 4 describes the

data. Section 5 outlines the empirical strategy, while Section 6 presents the results and the

11Evidence shows that subjective measures outperform objective indicators on environmental amenities
(Berezansky et al., 2010; Chasco and Gallo, 2013) by reducing the upward bias arising from a potential
mismatch between these metrics (Michael et al., 2000). Another reason advocating for the use of subjec-
tive measures is the difficulty of interpreting objective measures of environmental quality, which prompts
individuals to base their location decisions on their own insights of local pollution (Chasco and Le Gallo,
2015).
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robustness checks, and discusses potential identification threats. Section 7 concludes.

2. Analytical Framework

2.1 A Brief on the Hedonic Price Model

This study uses the hedonic price model to elicit willingness-to-pay measures for a non-

marginal degradation in local environmental quality due to the opening of new mines.12

Scholars applying hedonic price modeling to associate housing prices and quantities of en-

vironmental quality date back to Ridker (1967) and Ridker and Henning (1967), who first

conceived the value of a house as a function of its structural, neighborhood, and environmen-

tal characteristics (Freeman, 1979).13 This section briefly describes the hedonic price method

and its implications when evaluating a local deterioration in an environmental amenity. The

model predicts that rental prices decrease in response to a deterioration in environmental

quality.

The hedonic price theory considers that an item h can be valued by a vector z of char-

acteristics (z1, z2, ..., zj). In the case of a house, these characteristics include structural and

neighborhood characteristics and local environmental quality. The price of house h, there-

fore, can be considered as the sum of each of its homogeneous attributes in a price function

described as follows:

Ph(z) = P (z1, z2, ..., zj). (1)

This function Ph(z) is referred to as the hedonic price function and indicates the amount

that an individual must pay for a bundle with characteristics z. The partial derivative of

Ph(·) with respect to zj, ∂Ph(·)/∂zj, gives the marginal implicit price of characteristic zj.

Utility-maximizing individuals derive, at the same time, utility from a housing item h. In the

12New mining activity is expected to generate social impacts as well (see the previous section). For the
sake of simplicity, however, this section only considers a change in local environmental quality.

13For a more comprehensive review of hedonic price applications, see Mendelsohn and Olmstead (2009)
and Freeman III et al. (2014).
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housing market equilibrium arising from the interactions of buyers and sellers, individuals’

marginal willingness to pay (WTP) for characteristic zj equals the marginal implicit price

of that characteristic.

Rosen (1974) distinguishes the price hedonic function Ph(z) from the bid function

θi = θ(M, zj, z−j, u
∗), which represents what an individual i is willing to pay for different

values of characteristic zj, holding income M , other characteristics z−j, and utility constant

at a level u∗. Heterogeneous individuals’ preferences and income lead to different bid

functions, and so to different chosen quantities of characteristic zj. The relationship

between the hedonic price function Ph(z), and the bid functions θ1 and θ2 for individuals 1

and 2, respectively, for characteristic zj is depicted in Figure 1.

Figure 1: Bid Curves and the Hedonic Price Function in a Hedonic Market for Local Envi-
ronmental Quality

Suppose zj is a measure of local environmental quality. Figure 1 shows that both bid

functions exhibit diminishing marginal willingness to pay for zj, and that given the hedonic

price function, individuals 1 and 2 choose levels of environmental quality where their marginal

WTP for zj equals the marginal implicit price determined by the hedonic price function at
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z
′
j and z

′′
j , respectively. Given the market equilibrium, individuals’ utilities would be lower

at sites with higher or lower levels of environmental quality.

2.2 A Localized Change in Environmental Quality

This study aims to capture the impact of proximity to resource extraction site openings

on rental prices. The mechanisms behind these impacts are both the local economic effects

of new mining activity capitalized into housing prices, and a non-marginal decrease in local

environmental (and social) quality due to the high-pollution potential of these new sites. To

establish the welfare effects of this non-marginal change, it is assumed that the change in

environmental quality is a localized change (Palmquist, 1992), and therefore, the hedonic

price function does not shift in response to this variation. This is a valid assumption as the

number of cities (and households) in this study experiencing the treatment represents only

a small portion of the entire rental market in Chile (see Table 1). Hence, any environmental

quality degradation in these cities will not be sufficient to force a significant relocation of

individuals that could lead to a new hedonic price equation.14

Consider now that the opening of new resource extraction sites deteriorates environmental

quality in the neighborhood from z
′
j to z

′′
j . From Figure 1, this non-marginal change is

expected to decrease the price of house h. For individual 1 originally consuming z
′
j, the

new price for environmental quality falls below her/his WTP for the environmental quality

amenity. This individual can decide to relocate to a place with better environmental quality

and restore the equilibrium, in which case the net welfare effect of the non-marginal change

in zj comes from the reduction in wealth to the homeowner individual. If the individual

stays, she/he would be worse off due to a decrease in environmental quality even though

she/he would be paying less for occupying the house. The implied change in total welfare

from the environmental quality degradation, therefore, can be obtained by multiplying the

14An alternative approach to assessing a non-marginal change in a locational amenity is to estimate the
bid functions as suggested by Rosen (1974). As shown later on the paper, however, a taste-based sorting
prevents this estimation as preferences vary across individuals.
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observed equilibrium price differential due to the resource extraction site openings by the

number of residential housing rental units.

3. Resource Extraction in Chile

Chile is one of the world’s leading mining countries, many times referred to as the “mining

capital of Latin America”. The country holds important mineral reserves of copper, gold,

iodine, lithium, molybdenum, natural nitrates, rhenium, silver, and zinc (USGS, 2014), with

the entire industry accounting for 28% of the copper production, 23% of the molybdenum

production, and 6% of the silver production worldwide. Among other factors, this vast

amount of ore reserves explains the relevance of the industry for the national economy.

Nowadays, this sector contributes to 13% of Chile’s GDP, 15% of national taxes, 50% of

national exports, and 12% of total employment (Consejo Minero, 2017).

The mining industry in Chile features large-, medium-, and small-scale operations, and

unlike many other places in Latin America, there is no evidence of illegal mining in the

country.15 These operations can have state or private ownership. Primarily, mineral resources

in the ground are owned by all Chilean citizens, with legal ownership vested to the private

sector through government-granted rights to either explore or extract the resource. The 1983

National Mining Code (NMC) outlines the mechanisms for the concession of these property

rights, establishing a single request to the local civil court as the main step in this process.

Currently, a total of 31,183,231Ha is held by these concessions, equivalent to 41% of the

national territory (SERNAGEOMIN, 2013). About half of these concessions are granted for

extraction, where the main state-owned company, CODELCO, accounts for less than 6% of

participation (COCHILCO, 2016). CODELCO’s production indeed represents almost 30% of

Chile’s total copper production, followed closely by ESCONDIDA, the largest foreign-owned

mine in Chile, controlled mostly by BHP, a multinational mining company with presence in

15See “Organized Crime and Illegal Gold Mining in Latin America”, Global Americans, Online, accessed
July 6, 2018.
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several other countries such as Australia, Brazil, Canada, Mexico, and the United States.

While the strong contribution of mining to Chile’s development is undeniable, this sector

is accountable for high social and environmental impacts. Mining towns have reported

the highest rates of AIDS in the country, generally perceived a consequence of increased

prostitution and alcoholism rates in these areas, together with elevated rates of suicides and

divorces commonly linked to the long shift systems, which force mining workers to be absent

from home several days each week (Aroca, 2001). Low availability of local amenities has

also been pointed as a distinctive feature of mining towns in Chile (Paredes and Rivera,

2017), generally associated to a reduced amount of backward and forward linkages of mining

companies in these areas (Aroca, 2001; Arias et al., 2013; Rivera and Aroca, 2014).

Regarding environmental degradation, copper smelters are the highest emitters of SO2 in

the country, and of particulate matter (PM) in mining cities (Ministry of Environment, 2011).

Studies on soil composition also show high concentrations of copper, arsenic and antimony in

many valleys of the country (De Gregori et al., 2003), and local analyses on mining and social

disputes relate most of these conflicts to tailing management, glacier destruction issues, and

water scarcity (Transparency International, 2018). This last issue has become a topic of high

concern in Chile given the increasing use of water by the mining industry. After its use, this

resource is sometimes released back into natural courses, increasing the risks of water and soil

contamination (Sánchez and Enŕıquez, 1996). This risk is intensified in areas where miners

opt for abandoning their mills and other precarious installations once the extraction is over,

a practice that is generally attributed to artisanal miners (Sánchez and Enŕıquez, 1996).

Finally, the existence of tailing dams, acid drainage, abandoned mine sites, and biodiversity

and habitat, adds to the broad set of challenges as well (Newbold, 2006).

Despite these environmental risks being common to large, medium, and small-scale min-

ing, current environmental standards are primarily oriented towards large-scale operations,

with small-scale mining remaining mostly unregulated (Castro and Sánchez, 2003). Environ-

mental law in Chile restricts SO2 and arsenic emissions that, due to the specific operations
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of this segment, apply mostly to large-scale mining. Additionally, most of these companies

have attained accreditations concerned with environmental management systems to man-

age their environmental responsibilities and liabilities (Newbold, 2006). In any case, the

pronounced social and environmental impacts of mining projects are assessed early on by

the assessment system of environmental impacts, the institution in charge of evaluating new

mining projects and certifying their compliance with standing environmental regulations. In

extraordinary cases of dispute with social or environmental movements, however, the final

decision regarding their compliance is taken by a committee of ministers, a step that may

come at the cost of eliminating impartiality in the assessment process (Transparency Inter-

national, 2018). There is not an equivalent assessment process, however, to evaluate the

potential social impacts of these projects.

4. Data

4.1 Resource Extraction Sites

Data on extraction site openings come from the inventories of mineral sites prepared

by the National Service of Geology and Mining (Servicio Nacional de Geoloǵıa y Mineŕıa -

SERNAGEOMIN) for 2011 and 2016. This paper studies the openings of two main types

of extraction sites as defined by SERNAGEOMIN: active mines and artisanal mines.16 An

active mine is a small-, medium- or large-scale (hereafter called “conventional”) extrac-

tion site that is under formal and continuous operation over time.17 Artisanal mines are

instead a segment of small-scale mining that operate sporadically under informal and rudi-

16A distinction based on ownership (i.e. state vs. private) is not feasible as the ownership variable is
omitted from the inventory. However, the number of state-owned mining companies in Chile is reduced
to CODELCO and ENAMI only. One of CODELCO’s divisions, the “Ministro Hales” division, started
operations in 2013. Nevertheless, this division is located in the city of Calama, which is part of the cities
excluded from the analysis (see Figure A1 in the Appendix). This implies that most of the openings studied
here (if not all) correspond to private initiatives.

17According to the National Service of Geology and Mining (SERNAGEOMIN), a small-scale mine has
less than 80 hired workers; a medium-scale mine has between 80 and 400 workers; and a large-scale mine
has more than 400 workers.
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mentary conditions depending on the ore price (Dı́az Tobar, 2015), minimizing any local

economic impact relative to conventional operations. Many of these mines also tend to lack

of monitoring systems, which impede the proper tracking of their environmental impact and

preclude their proper regulation. Furthermore, artisanal mines’ lack of financial capacity

to invest in abatement technologies (Sánchez and Enŕıquez, 1996) hampers the application

of environmental best practices, which puts them at a disadvantage in terms of corporate

environmental responsibility when compared to conventional mines. Since 2011, more than

3,500 new conventional sites and around 3,000 new artisanal sites were opened in the country

(see Table A1 in Appendix).18 During this period, however, many old sites closed operations

as well. A total of 4,041 sites shut down, with most of these closings coming from artisanal

sites, which corroborates the vulnerability of this segment.

To study the impact of mine openings on rental prices, the former site distinction is used

to define three treatments at the city-level. The first treatment is the general opening of

either conventional mines, artisanal mines, or both, and it is labeled “all-mine openings”; the

second treatment is defined as “only conventional site openings”; while the third treatment

constitutes “only artisanal site openings”. Cities are classified into one of these treatment

groups depending on the type of openings taking place over time, or into a control group

of cities if they have no records of mining activity during this time.19 Provided that the

concentration of new extraction sites is truly affecting rental prices in hosting cities, cities

with a constant number of mines should exhibit no price impacts attributable to this feature.

With this rationale, cities with mining activity in 2011 but with no additional openings

between 2011-2016 are part of a placebo group of cities used later in a falsification test. To

easily attribute price impacts to a specific event, a total of 100 cities that simultaneously

host site openings and closings are dismissed from the analysis.20 Figure A2 (Appendix)

18For a spatial location of the openings see Figure A1 in Appendix.
19At same time, this classification requires that none of these cities had experienced additional closures

over the study period. In this way, the number of inactive or abandoned sites in the treatment cities (if any)
is kept constant, and so their potential effect on rental prices is eliminated when taking the price difference
over time.

20Ideally, there would be a treatment group with cities experiencing mine closings as well. However, all
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illustrates the groups construction, while Figure A3 (Appendix) depicts the spatial location

of cities in each group.

4.2 Household Information

Data on extraction sites is combined with information on rental houses, prices and struc-

tural characteristics, using the 2011 and 2015 versions of the National Socioeconomic Char-

acteristics Survey (CASEN). Households in this survey describe the structural characteristics

of their dwellings, while those declaring themselves as tenants report their monthly rent pay-

ment. Renting households in this survey add up to approximately 24,000 households over

these two periods. Assuming no major differences in mine openings between 2015 and 2016,

no announcement effects, and no future expectations on these openings, rental prices for

2015 will capture most of the effect of proximity to the concentration of mine sitings on the

rental market.

Household information is merged with cities’ attributes that might simultaneously affect

the equilibrium rental price. This work considers data on local public finances and other city-

level characteristics that come from the National System of Municipal Information (SINIM).

Variables such as the poverty rate and population density are used as controls for character-

istics of the local economy and agglomeration economies, respectively. Other variables such

as the number of public parks and squares, and per capita expenditures on waste disposal

and pick-up are all considered to approximate a city’s quality of life. Additionally, informa-

tion on crime rates per 1,000 inhabitants from the Crime Prevention Sub-Secretary (SPD) is

also considered. The final dataset contains around 14,000 households over 2 years and 264

cities, classified into one of either the treatment groups, the control group, or into a placebo

the site closures identified in the data took place in cities that simultaneously host new openings, making
it hard to isolate this event. Previous evidence on the closures of toxic plants, however, shows that housing
prices remain unaffected after the shutdown of these facilities due to lasting visual effects or concerns on
local contamination, which in turn implies that toxic facilities continue to negatively affect housing prices
even after they cease operations (Currie et al., 2015), particularly if some of these sites are left abandoned
(Newbold, 2006).
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group.21 The final number of cities and households by group is depicted in Table 1, while

Table A2 (Appendix) displays the descriptive statistics of the main variables in the sample.

Period Group Unit
All-Mine Only Conventional Only Artisanal Placebo
Openings Mine Openings Mine Openings

2011
Treated

Cities 51 13 12 11
Households 1,669 208 667 655

Control
Cities 173 173 173 173

Households 4,570 4,570 4,570 4,570

2015
Treated

Cities 51 13 12 11
Households 2,078 186 902 353

Control
Cities 173 173 173 173

Households 5,454 5,454 5,454 5,454

Notes: Chile is administratively divided into 346 communes -or cities- grouped into 15 regions. All-mine
openings consider cities with only opening of conventional mines, only opening of artisanal mines, and the
simultaneous opening of both sites (for more on the construction of groups, see Figure A2). This treatment,
therefore, includes more cities than the last two groups together.

Table 1: Number of Cities and Households by Group

Table 2 displays the mean characteristics of the main covariates by groups for the 2011

pre-treatment period. Panel A shows dwellings’ characteristics, while panel B displays cities’

attributes. Columns (1)-(4) display means by group, while columns (5)-(7) display p-values

from mean comparisons among the treatments and the control group. Mean comparisons in

columns (5), (6) and (7) reject the null hypothesis of equal means across groups for most of

the covariates, revealing their imbalance across groups. Covariate imbalance among treated

and control units might add bias to the difference-in-difference estimation, as these units

may not necessarily have the same distribution over observed variables. To deal with this

concern, units in treated and control groups are adjusted through a matching procedure

explained in detail in the next section.

21The other 10,000 households are those homes located in cities that, due to the simultaneous opening
and closing of mines, are dismissed from the analysis.
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Variables

Means p-values

All-Mine Only Conventional Only Artisanal Control
(1) vs. (4) (2) vs. (4) (3) vs. (4)

Openings Mine Openings Mine Openings Group

(1) (2) (3) (4) (5) (6) (7)

Panel A. House-Level Characteristics
# of Bedrooms 2.280 2.303 2.119 2.338 0.03 0.59 0.00
# of Bathrooms 1.172 1.038 1.266 1.112 0.00 0.02 0.00
Dwelling Type (Base = substandard)

Proportion Row Units 0.382 0.394 0.302 0.408 0.06 0.68 0.00
Proportion Single-Family Units 0.308 0.587 0.245 0.445 0.00 0.00 0.00
Proportion Apts. (elev.) 0.132 - 0.294 0.040 0.00 0.00 0.00
Proportion Apts. (no elev.) 0.158 0.019 0.116 0.090 0.00 0.00 0.04

Walls Material (Base = substandard)
Proportion Reinforced Concrete 0.220 0.053 0.335 0.111 0.00 0.01 0.00
Proportion Masonry 0.473 0.514 0.344 0.389 0.00 0.00 0.03
Proportion Drywall 0.244 0.356 0.228 0.479 0.00 0.00 0.00

Walls Condition (Base = bad)
Proportion Regular 0.673 0.558 0.699 0.609 0.00 0.14 0.00
Proportion Good 0.248 0.341 0.227 0.295 0.00 0.15 0.00

Floor Material (Base = substandard)
Proportion Wood 0.364 0.308 0.546 0.451 0.00 0.00 0.00
Proportion Tile 0.412 0.466 0.245 0.359 0.00 0.00 0.00
Proportion Carpet 0.084 0.019 0.120 0.077 0.39 0.00 0.00
Proportion Cement 0.054 0.019 0.040 0.044 0.08 0.09 0.62

Floor Condition (Base = bad)
Proportion Regular 0.653 0.505 0.680 0.609 0.00 0.00 0.00
Proportion Good 0.260 0.356 0.251 0.296 0.01 0.06 0.02

Roof Material (Base = substandard)
Proportion Roof Tiles 0.091 0.029 0.114 0.106 0.08 0.00 0.52
Proportion Concrete 0.208 0.010 0.303 0.074 0.00 0.00 0.00
Proportion Zincstrips 0.697 0.962 0.580 0.819 0.00 0.00 0.00
Proportion Clinkstone 0.004 - 0.003 0.000 0.00 0.76 0.02

Roof Condition (Base = bad)
Proportion Regular 0.686 0.567 0.728 0.645 0.00 0.02 0.00
Proportion Good 0.226 0.322 0.207 0.259 0.01 0.04 0.00

Dimension (Base = < 30m2)
Proportion 30-40m2 0.247 0.236 0.230 0.260 0.29 0.43 0.10
Proportion 41-60m2 0.351 0.413 0.314 0.353 0.90 0.07 0.05
Proportion 61-100m2 0.217 0.149 0.262 0.197 0.09 0.09 0.00
Proportion 101-150m2 0.058 0.063 0.064 0.050 0.21 0.42 0.13
Proportion +150m2 0.016 0.014 0.018 0.015 0.93 0.91 0.58

Panel B. City-Level Attributes
Density (km2) 372.8 110.1 978.9 1,348.3 0.03 0.18 0.69
Crime (per 1,000/inab.) 3,064.3 2,246.4 4,029.5 2,768.9 0.34 0.28 0.04
Poverty (%) 15.25 17.09 14.45 19.39 0.00 0.34 0.05
Waste Disposal (%) 0.195 0.161 0.207 0.250 0.04 0.06 0.39
# of Parks (p.c.) 0.120 0.096 0.299 0.120 1.00 0.86 0.33
# of Public Squares (p.c.) 4.007 11.590 1.023 0.681 0.04 0.00 0.22

Notes: The crime variable considers criminal offenses of strong social connotation. p.c. = per capita.

Table 2: Balance Table of Mean Pre-Treatment (2011) Characteristics

4.3 Air and Water Pollution Perceptions

Households’ perceptions of air and water pollution come from the 2015 version of CASEN.

Two indexes of pollution at the city-level are constructed from these perceptions, which
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are related later to objective measures of environmental quality. The link between these

indexes and objective indicators of pollution reduces any multicollinearity problem generally

associated with the use of multiple pollutants or measures of environmental quality (Boyle

and Kiel, 2001).

Objective indicators of air pollution come from the Emissions and Pollutant Transfers

Register (RETC), containing records of annual pollutant emissions for the entire country. In

particular, this study considers 2015 ton/year emissions of four criteria air pollutants widely

known for causing smog and a broad range of adverse health effects (U.S. Environmental

Protection Agency, 2013): fine particulate matter (PM2.5), carbon monoxide (CO), nitro-

gen dioxide (NOX), and sulfur dioxide (SO2). Similarly, 2015 ton/year water emissions of

total suspended solids (TSS) from RETC are used for water pollution. Due to reduced data

availability, measures other than emissions such as population density (as a proxy for the

local economy’s dynamism), and the regional monthly average streamflow of main rivers (as

a proxy for the availability of recreational water reservoirs), are also considered to approxi-

mate water pollution levels. After examining the 2015 relationship between these measures

and pollution perceptions, the 2011 cities’ average prediction of pollution perceptions are

calculated using the 2011 versions of objective indicators. Details on this imputation are

provided in the next section.

5. Empirical Strategy

5.1 Households’ Perceptions of Air and Water Quality

On a four-point scale that ranges from “never” to “always”, households in 2015 CASEN

state the frequency with which they observe air pollution in their neighborhoods and water

pollution in nearby lakes, estuaries, and rivers. Drawing on the ordinal but subjective

characteristic of these variables, this work assigns weights to each of these categories using

ridit analysis (Bross, 1958). Ridit scoring is a non-parametric tool utilized to compare
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more than two datasets with ordered qualitative data. It uses the observed distribution

of households to construct a numerical quantity (“ridit”) that in this case will serve as an

index of pollution perception. Let x1, x2, ..., xn be the ordered categories on the perception

variable, and p be the probability function defined with respect to the reference category as

pi = Prob(xi) with i = 1, ..., n. A ridit is calculated as follows:

Riditi =

{
0.5pi +

∑
k<i pk if i > 1

0.5pi if i = 1.
(2)

Intuitively, a ridit works as a modified notion of a percentile in the sense that a low

ridit value for category i can be interpreted as only a few households choosing a category

k such that k < i. Table A3 (Appendix) reports the ridits calculation for 2015 households’

perceptions of air and water pollution, with column (5) containing the final score. These

ridits are later averaged at the city level to construct two indexes of air and water pollution

perceptions to regress on objective measures of environmental quality. Under a time-invariant

partial relationship assumption, estimation coefficients from these regressions are used to

input 2011 city-level averages. To do so, let Yj be a fractional random variable representing

city j’s average pollution perception taking realizations yj on the unit interval [0, 1]. The

conditional probability of Yj being equal to yj is defined as follows:

P (Yj = yj|Xj) = E(Yj|Xj) =
exp(Xjγ)

1 + exp(Xjγ)
, (3)

where E(Yj|Xj) is the conditional mean function defined as the logistic function, and Xj is

a vector of covariates (including a constant).

As explained in the previous section, the vector Xj includes variables on PM2.5, CO, NOX ,

and SO2 emissions whenever Yj indicates air pollution perceptions; and variables on TSS,

average streamflow in rivers, and density whenever Yj represents water pollution perceptions.

Because realizations of Yj take values between 0 and 1, estimation of equation 3 applies

findings in Papke and Wooldridge (1996) and uses a Bernoulli Quasi-Maximum Likelihood
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Estimator (QMLE) fractional logit regression with 2015 information. After getting the vector

of estimated coefficients, γ̂, predictions of 2011 cities’ average pollution perceptions are

calculated using 2011 versions of the covariates. Results for average marginal effects in

equation 3, and their significance, are omitted from the results section, but are displayed in

the Appendix (see Table A4). Table A5 (Appendix) displays the summary statistics for these

indexes, which are later transformed into a standard z-score to ease their interpretation.

5.2 Spatial Difference-in-Difference Hedonic Price Estimation

If the resource extraction activity represents a disamenity to households, rental prices

should decrease in cities hosting new mine openings relative to prices in these cities had

mine sites not been opened. Given that this control is not available for observational data,

this study tackles this question using a spatial difference-in-difference (DID) approach that

considers pre- and post-treatment data for a group of treated and control cities. In addition

to allowing identification of average treatment effects by capturing group-level and time-level

omitted variables (Angrist and Pischke, 2008), a DID estimation reduces the bias from time-

invariant omitted variables, and ensures the proper control of time-variant implicit prices

(Kuminoff et al., 2010). The spatial DID hedonic price equation is defined as follows:

rhjt = α + δ11[T ]j + δ21[After] + δ31[T ]j × 1[After] + Hhjtζ + φj + εhjt, (4)

where rhjt is the natural log of the rental price paid by household h in city j during year

t, with h = 1, ..., H, j = 1, ..., J , and H > J ; 1[T ]j is an indicator variable taking 1 if

city j belongs to a treatment group, and 0 if j belongs to the control group; 1[After] is an

indicator variable taking 1 if year t = 2016, and 0 otherwise; Hhjt is a vector of covariates

on housing units and city-level characteristics, including air and water pollution; and εhjt is

an idiosyncratic effect. Equation 4 also includes dummies by region, φj (generalized later

into dummies by region × year, φjt), aimed at controlling for time-invariant unobservables
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(and time-variant unobservables at the macro level) that might simultaneously affect the

outcome and the covariates of interest. This equation is estimated using an ordinary least

square (OLS) estimator, with standard errors clustered at the region level.

The key parameter to estimate in equation 4 is δ3, which represents the causal effect

of new mine openings on rental prices, or in other words, the average treatment effect on

the treated (ATT) (Blundell and Dias, 2009). This ATT captures the net effect on rental

prices of an increasing concentration of mines in the treatment group, and is expected to

have a negative and significant sign whenever the disamenity effect of these sites exceeds the

economic benefits that an increase in mining operations has on the housing rental market.22

5.3 Spatial Difference-in-Difference Nearest-Neighbor Matching

Covariates’ mean characteristics displayed in Table 2 show a significant imbalance across

groups, which might bias OLS estimations leading to inaccurate conclusions about the real

impacts of mining. To improve this balance, a nearest-neighbor matching (NNM) estimator

is added to the original DID design to compare rental prices across similar units. The NNM

estimator enhances groups’ comparability by using a vector Hh of covariates unaffected by

the treatment, to match comparable households in the control group to households in the

treatment group. Units not selected as matchings are excluded from the analysis.

The NNM procedure works as follows. Let Tl be the set of households in treatment group

l = {1, 2, 3}; C the set of counterfactual households; and rTl
h and rCh be the observed rental

prices (in logs) for treated and control households, respectively. For each household h in

treatment group l, define a neighborhood ΩH
m(hl). NNM sets

ΩH
m(hl) = {k1, k2, ..., kmh

|h ∈ Tl, ||Hh −Hk||s < ||Hh −Hi||s, i 6= k}, (5)

22Identification of causal effects in a DID design comes from the counterfactual assumption that the trend
in the rent prices for the control group is equivalent to the trend in the rent prices for the treatment group
in absence of the treatment. Figure A4 (Appendix) fits this common trends assumption for the treatment
groups, the control, and the placebo group, using the baseline sample. Pre-treatment periods correspond to
2009 and 2011. Unfortunately, missing data on pollution and other amenities at the city-level prevent the
use of 2009 in the main analysis.
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where ||Hh − Hk||s = {(Hh − Hk)
′
S−1(Hh − Hk)}1/2; S is a symmetric, positive-definite

distance matrix; and m is the smallest number such that the number of elements in ΩH
m(hl)

is (at least) the desired number of matches. Once control households are matched to treated

households, the NNM estimates the ATT as follows:

τ̂ATTl
=

1

nl

∑
h∈Tl

(rTl
h −

1

mh

∑
k∈Ω(hl)

rCk ), (6)

where Ω(hl) = ΩH
m(hl), and nl and mk are the number of households in group Tl and C,

respectively. When more than one period is available, it is possible to apply the Difference-

in-Difference Nearest-Neighbor Matching (DIDNNM) estimator defined as follows:

τ̂ATT−DIDl
=

1

nlt

∑
h∈Tlt

(rTlt
h −

1

mh

∑
k∈Ω(hl)t

rCt
k )− 1

nlt′

∑
h∈Tlt′

(r
Tlt′
h − 1

mh

∑
k∈Ω(hl)t′

r
Ct′
k ), (7)

where Tlt, Tlt′ , Ct, and Ct′ denote the treatment group l and the control group C in years t

and t′ respectively.

This paper implements a DIDNNM procedure that matches at least one neighbor, with

replacement, to each h in the treatment group (i.e. m = 1) (Dehejia and Wahba, 2012).

Additionally, it considers that all the covariates included in the vector H in equation 4

(except variables on environmental pollution); it requires an exact match for all the discrete

covariates; and it sets S to be the Mahalanobis distance matrix for continuous covariates.

Table 3 displays the mean characteristics by group after the NNM procedure for the

pre-treatment period. As in Table 2, panel A shows dwellings’ characteristics, while panel

B exhibits cities’ attributes. Columns (1)-(3) show the covariates’ means for houses in cities

with all-mine openings and its matched control group, and the p-value of their comparison.

Similarly, columns (4)-(6) display the information for houses in cities with only conventional

mine openings, while columns (7)-(9) are for houses in cities with only artisanal mine open-

ings. Pre-treatment covariates show a balance improvement across groups relative to similar
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Variables

Means
p-values

Means
p-values

Means
p-values

All-Mine Matched Only Conventional Matched Only Artisanal Matched

Openings Control Mine Openings Control Mine Openings Control

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. House-Level Characteristics
# of Bedrooms 2.430 2.352 0.02 2.301 2.371 0.43 2.464 2.348 0.12
# of Bathrooms 1.205 1.191 0.50 1.044 1.036 0.80 1.423 1.332 0.06
Dwelling Type (Base = substandard)

Proportion Row Units 0.434 0.447 0.57 0.449 0.473 0.67 0.309 0.310 0.99
Proportion Single-Family Units 0.339 0.315 0.24 0.551 0.527 0.67 0.361 0.358 0.94
Proportion Apt. (elev.) 0.078 0.078 0.98 - - - 0.227 0.235 0.80
Proportion Apt. (no elev.) 0.147 0.159 0.44 - - - 0.103 0.097 0.80

Walls Material (Base = substandard)
Proportion Reinforced Concrete 0.161 0.145 0.16 0.044 0.036 0.72 0.254 0.245 0.80
Proportion Masonry 0.567 0.601 0.11 0.596 0.617 0.71 0.436 0.435 0.98
Proportion Drywall 0.267 0.249 0.34 0.353 0.341 0.83 0.309 0.319 0.79

Walls Condition (Base = bad)
Proportion Regular 0.743 0.775 0.08 0.596 0.647 0.36 0.780 0.784 0.91
Proportion Good 0.215 0.189 0.13 0.331 0.293 0.48 0.189 0.187 0.95

Floor Material (Base = substandard)
Proportion Wood 0.344 0.323 0.30 0.324 0.281 0.43 0.543 0.555 0.77
Proportion Tile 0.484 0.522 0.08 0.529 0.599 0.23 0.275 0.271 0.91
Proportion Carpet 0.065 0.080 0.39 - - - 0.117 0.113 0.88
Proportion Cement 0.039 0.040 0.89 - - - 0.027 0.026 0.90

Floor Condition (Base = bad)
Proportion Regular 0.743 0.774 0.10 0.544 0.599 0.34 0.780 0.898 0.83
Proportion Good 0.214 0.190 0.16 0.353 0.317 0.52 0.189 0.184 0.87

Roof Material (Base = substandard)
Proportion Roof Tiles 0.083 0.072 0.36 0.007 0.006 0.88 0.137 0.129 0.76
Proportion Concrete 0.164 0.180 0.32 - - - 0.261 0.265 0.93
Proportion Zincstrips 0.753 0.747 0.76 0.993 0.994 0.88 0.601 0.606 0.90
Proportion Clinkstone - - - - - - - - -

Roof Condition (Base = bad)
Proportion Regular 0.760 0.790 0.10 0.596 0.653 0.31 0.794 0.803 0.77
Proportion Good 0.190 0.167 0.18 0.324 0.281 0.43 0.165 0.158 0.82

Dimension (Base = < 30m2)
Proportion 30-40m2 0.219 0.200 0.29 0.235 0.198 0.43 0.144 0.152 0.80
Proportion 41-60m2 0.377 0.408 0.15 0.390 0.455 0.25 0.309 0.313 0.92
Proportion 61-100m2 0.255 0.246 0.62 0.169 0.150 0.65 0.388 0.387 0.98
Proportion 101-150m2 0.056 0.051 0.61 0.066 0.078 0.70 0.089 0.084 0.81
Proportion +150m2 0.013 0.011 0.68 0.007 0.006 0.88 0.021 0.019 0.91

Panel B. City-Level Attributes
Density (km2) 255.5 1,362.6 0.01 110.1 484.3 0.31 530.2 1,224.8 0.44
Crime (per 1,000/inab.) 2,784.5 2,878.9 0.76 2,223.3 2,623.4 0.28 2,833.9 3,045.6 0.76
Poverty (%) 15.0 18.5 0.01 17.7 19.9 0.32 12.0 17.5 0.05
Waste Disposal (%) 0.202 0.244 0.14 0.217 0.217 0.26 0.218 0.257 0.47
# of Parks (p.c.) 0.125 0.082 0.25 0.104 0.052 0.22 0.299 0.074 0.01
# of Public Squares (p.c.) 4.087 0.754 0.09 12.266 0.752 0.02 1.023 0.754 0.36

Notes: Matching using 1:1 nearest-neighbor matching procedure that requires an exact match for all the
categorical variables. p.c. = per capita.

Table 3: Balance Table of Mean Pre-Treatment (2011) Characteristics After Nearest-
Neighbor Matching

comparisons in Table 2. After shrinking the control group to only comparable houses, there

is no strong evidence that pre-treatment observables are different among households in the
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treatments and in the control groups, particularly for variables in panel A.23

5.4 Other Matching Procedures

Three additional matching procedures are considered as a robustness check. A straight-

forward modification is to set the number of minimum matches, m, to be greater than one.

This option means that each observation h in the treatment group has a set of nearest-

neighbors of size m > 1. A second modification sets the distance of continuous variables

between treated observations and their matches, ||Hh − Hk||s, to be less or equal than a

constant c called the caliper, while the third modification considers the Euclidean distance

matrix as the S distance matrix.

6. Results

6.1 The Effects of Extraction Site Openings on Rental Prices

Estimates of the effects of mine openings on rental prices are displayed in Table A6 (Ap-

pendix) for the spatial DID estimator, and in Table 4 for the spatial DIDNNM estimator.

Panel A exhibits the results for all-mine openings, panel B for only conventional openings,

and panel C for only artisanal mine openings. Columns (1) to (6) represent different speci-

fications of equation 4.

The results in Table A6 (Appendix) on the impacts of proximity to the concentration of

new mines are all negative, an indication that these openings lead to a decrease in the rental

prices of nearby houses. In other words, increasing health risks and social and environmental

degradation from mining, requires renters to be compensated with lower rental prices to

23Figure A5 (Appendix) displays the common trends assumption for all the treatments and the placebo
group using the matched sample. Relative to the trends in rental prices exhibited for the baseline sample
(Figure A4), the price gap between homes in treated and control cities shrinks once the comparability of
the control group is improved. At the same time, there is a new price trend in cities with all-mine openings
(panel a) and artisanal mine openings (panel c). Pre-treatment common trends on the matched sample
suggest the existence of a negative treatment effect for all the three different treatments.
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attract them to these places. Yet, a concern on these results is that houses in treatment and

control groups are not directly comparable, as revealed previously in Table 2, which could

bias the estimates in Table A6. This concern is minimized after estimating the hedonic price

equation on the matched sample in Table 4, which offer a more relievable overview of the

impact of mining on rental prices.

(1) (2) (3) (4) (5) (6)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.265 -0.104∗∗ -0.172∗∗ -0.198∗∗∗ -0.191∗∗∗ -0.207∗∗∗

(0.203) (0.049) (0.058) (0.054) (0.046) (0.054)
N treated 2,212 2,212 2,212 2,200 2,200 2,200
N control 3,663 3,663 3,663 3,604 3,604 3,604

Panel B. Only Conventional Openings:
1[T ] × 1[After] -0.183 -0.180∗ -0.218∗ -0.196∗ -0.167∗ -0.160

(0.112) (0.102) (0.112) (0.106) (0.0947) (0.110)
N treated 231 231 231 229 229 229
N control 270 270 270 254 254 254

Panel C. Only Artisanal Openings:
1[T ] × 1[After] -0.341 -0.150∗∗ -0.168∗∗ -0.192∗∗ -0.194∗∗ -0.221∗∗∗

(0.259) (0.062) (0.053) (0.074) (0.061) (0.040)
N treated 770 770 770 770 770 770
N control 1,697 1,697 1,697 1,681 1,681 1,681

Controls × × × × ×
Air and Water Pollution × × ×
Region FE × ×
Region × Year FE × ×

Notes: Using rental prices in logs as the response variable. Matching on every period using 1:1 nearest-
neighbor matching procedure that requires an exact match for all the categorical variables included in
the original hedonic-price estimation. Controls include house-level characteristics and city-level attributes
described in Table 3. Air and water pollution variables are the z-scores of their respective pollution indexes.
Standard errors clustered by region in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 4: The Impact of Mine Openings on Rental Prices: Spatial DIDNNM

As shown in Table 4, the estimated causal effects of new mines remain negative after

redefining the control group. Overall, the results in Table 4 suggest that the concentration of

new mines represents an environmental disamenity to households. The DIDNNM estimator

in column (1) shows that households are compensated with rental prices that are 27 percent

lower in cities with all-mine openings (panel A), 18 percent lower in cities with conventional

openings (panel B), and 34 percent lower in cities with artisanal mine openings (panel C).
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These effects decrease in magnitude once the hedonic framework is introduced in columns

(2)-(3). Proximity to the concentration of all-mine openings lowers rental prices in around

10-17 percent (panel A), while conventional openings decrease rental prices by roughly 18-

22 percent (panel B), although these last effects are weakly significant, particularly when

the pollution indexes are included in columns (4)-(6). In fact, this inclusion in columns

(4)-(6) decreases the magnitude of the negative net impact of conventional openings (panel

B), suggesting that the impact of this type of mining is mostly linked to their pollution

potential. This effect is weakly significant, however, probably because of the high local

economic impacts of large and medium-scale mines (Aragon and Rud, 2013; Loayza and

Rigolini, 2016), which could offset to a larger extent their disamenity effect.

The above is not necessarily the case of artisanal mining. As previously mentioned,

artisanal mines are generally at a disadvantage relative to conventional mines regarding their

compliance with current environmental laws and the use of safety practices. In addition, their

local economic benefits tend to be smaller than large-scale operations due to their minor and

sporadic operations. Consistently, the results in panel C indicate that artisanal openings

decrease rental prices by around 15-17 percent (columns (2)-(3)). Moreover, this impact

is even higher in magnitude after controlling for air and water pollution in columns (4)-

(6), suggesting that additional forms of distortions beyond air and water pollution, such

as visual or soil pollution, social disruptions, or even concerns about future environmental

disasters, are all relevant to this type of mining. Notwithstanding, under the concern that

environmental variables might not be good controls, the preferred estimates are those in

column (3) of Table 4.

To better understand this previous impact, Figure 2 shows the short-term rental price

impact by the number of new conventional mines (panel a) and new artisanal mines (panel

b). From this Figure, it is clear that the impact of new mining activity described in Table 4

is exacerbated as the number of new mines increases, yet with interesting contrasts. Panel

(a) of Figure 2 shows that a reduced number of new mines leads to lower rental prices,
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(a) Only Conventional Openings

(b) Only Artisanal Openings

Figure 2: The Impact of Mine Openings on Rental Prices by Number of Openings

Notes: Non-linear effects are estimated using the specification in column (3) of Table 4 with a polynomial
of degree two.

although this effect turns positive as the number of these new sites increases. As antici-

pated before, conventional openings generate a higher economic impact at the local level

that counterbalance, to a higher extent, the negative externalities of extraction. As the

number of these facilities increases, they attract more workers to these cities boosting the

local economy and so the rental market, which can eventually lead to an increase in rental

prices.24 In contrast, artisanal openings lead to a consistent reduction in rental prices (panel

24This is consistent with the house price index developed for Chile in Paredes and Aroca (2008). After
matching houses across the entire country, they conclude that the region with the highest index is the region
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b), which is intensified as the number of these openings increases. Artisanal openings are

small-scale deposits that employ a reduced, and less qualified number of workers, relative

to conventional openings, and so new mines of this kind are unlikely to affect the inflow

of migrants to these areas. Simultaneously, their operations are mostly focused around the

extraction of the mineral (instead of smelting it), while institutional oversight mechanisms

on their environmental impact are less clear. These two features could lead to a notorious

concentration of pollution in areas hosting these openings, and so to a higher risk of future

environmental disasters. For instance, the use of mills (trapiches) to reduced minerals to

dust, is a common practice among artisanal miners in Chile (Sánchez and Enŕıquez, 1996),

which in addition to exacerbating dust pollution increases noise and visual contamination.

These factors outweigh the limited economic impact of this type of mining, leading ultimately

to a sharp reduction in rental prices.

6.2 Heterogeneous Effects by Pollution Levels

This section explores whether the impact of opening new mines changes with different

levels of environmental degradation.25 Table 5 displays the results for the air pollution index

and for different levels of fine particle matter (PM2.5) and sulfur dioxide (SO2), while Table 6

exhibits similar results for the water pollution index and total suspended particles (TSS).26

Table 5 shows that the net negative effects of new mining activity vary with air pollution

levels. The result for the air pollution index in the richest specification (column (3)) indicates

a baseline negative impact on rental prices of 13 percent in cities with all-mine openings

(panel A) and an additional 16 percent price drop for a one standard-deviation increase in

air pollution. This suggests that the greater the degree of airborne contamination, the higher

the amount that households are willing to pay to avoid mining. This result holds even after

replacing the air pollution index with PM2.5 or SO2 emissions. The results in Table A7 for

that has had the highest number of conventional mines over time.
25The goal of this section is to study heterogeneous effects of mining on rental prices at different degrees

of environmental pollution, regardless of the origin or source of this pollution.
26Results for the other air pollutants are in Table A7 in the Appendix.
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Air Pollution Index PM2.5 SO2

(1) (2) (3) (1) (2) (3) (1) (2) (3)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.041 -0.131∗∗ -0.128∗∗ -0.111∗ -0.181∗∗∗ -0.191∗∗∗ -0.082 -0.166∗∗∗ -0.171∗∗

(0.067) (0.054) (0.063) (0.059) (0.048) (0.052) (0.060) (0.046) (0.053)
1[T ] × 1[After] × Pollution -0.155∗∗ -0.123∗∗ -0.158∗∗∗ -0.144∗∗ -0.205∗∗∗ -0.201∗∗∗ -0.041∗ -0.081∗∗∗ -0.080∗∗∗

(0.058) (0.042) (0.041) (0.048) (0.050) (0.056) (0.024) (0.020) (0.024)

Panel B. Only Conventional Openings:
1[T ] × 1[After] -0.103 -0.045 -0.027 -0.028 0.024 0.067 -0.094 -0.077 0.007

(0.171) (0.136) (0.120) (0.120) (0.125) (0.128) (0.093) (0.106) (0.106)
1[T ] × 1[After] × Pollution -0.117 -0.236∗ -0.282∗∗ -0.162∗ -0.262∗∗ -0.318∗∗∗ -0.059∗ -0.101∗∗ -0.131∗∗∗

(0.189) (0.139) (0.112) (0.089) (0.087) (0.067) (0.033) (0.037) (0.032)

Panel C. Only Artisanal Openings:
1[T ] × 1[After] 0.0358 -0.079 -0.137∗∗ -0.151 -0.148∗∗ -0.198∗∗∗ -0.092 -0.213∗∗ -0.212∗∗

(0.100) (0.076) (0.045) (0.103) (0.074) (0.037) (0.103) (0.087) (0.084)
1[T ] × 1[After] × Pollution -0.148 -0.169∗∗ -0.074 -7.616 -0.772 -0.119 -3.500∗∗ -4.722∗∗ -1.530

(0.095) (0.063) (0.046) (4.933) (4.074) (2.113) (1.353) (2.140) (2.158)
Controls × × × × × × × × ×
Region FE × × ×
Region × Year FE × × ×

Notes: Results for the DIDNNM estimator. Panel A: N treated = 2,200, N control = 3,604. Panel B: N
treated = 229, N control = 254. Panel C: N treated = 770, N control = 1,681. All regressions control for
house-level characteristics and city-level attributes described in Table 3. Standard errors clustered by region
in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 5: The Impact of Mine Openings by Air Pollution Levels

NOX confirm this result.

A similar conclusion is found for conventional openings (panel B), although the baseline

impact of mine openings turns insignificant this time. In this scenario, rental prices drop

only with increased contamination, as reflected by the significance of the interaction between

1[T ] × 1[After] and the air pollution index. The results for PM2.5 are also found negative

and high in magnitude, potentially due to the high correlation that exists —at large-scale

operations— between this pollutant and other harmful contaminants such as SO2 (also sig-

nificant). In this situation, the interaction between 1[T ] × 1[After] and PM2.5 emissions

would be capturing airborne deteriorations due to other pollutants as well, which increases

the magnitude of this estimate. In any case, the negative impact of conventional openings

in areas with high air quality deterioration is reinforced across all the different airborne

pollutants.27 On the contrary, artisanal mine openings (panel C) maintain a strong baseline

27Strong heterogeneous effects are found for CO emissions in Table A7 as well. CO is one of the most
common airborne pollutants from vehicle emissions. Large- and medium-scale operations in Chile are known
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negative effect on rental prices that is only weakly aggravated by air pollution.

Water Pollution Index TSS

(1) (2) (3) (1) (2) (3)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.237∗∗∗ -0.221∗∗ -0.294∗∗∗ -0.082 -0.191∗∗∗ -0.153∗∗

(0.045) (0.058) (0.061) (0.063) (0.051) (0.055)
1[T ] × 1[After] × Pollution -0.147∗∗∗ -0.030 -0.101 -0.004 0.002 -0.028∗∗

(0.020) (0.088) (0.077) (0.002) (0.002) (0.009)

Panel B. Only Conventional Openings:
1[T ] × 1[After] 0.187 0.184 0.139 -0.142 -0.127 -0.109

(0.105) (0.112) (0.105) (0.105) (0.114) (0.110)
1[T ] × 1[After] × Pollution -0.993∗∗∗ -0.762∗∗∗ -0.709∗∗ -0.013∗ -0.022∗∗ -0.028∗∗∗

(0.146) (0.150) (0.156) (0.008) (0.007) (0.005)

Panel C. Only Artisanal Openings:
1[T ] × 1[After] -0.268∗∗ -0.260∗∗ -0.363∗∗ 0.077 -0.023 -0.104

(0.074) (0.064) (0.078) (0.064) (0.062) (0.065)
1[T ] × 1[After] × Pollution -0.298∗ -0.149 -0.313 -0.165∗∗∗ -0.147∗∗∗ -0.103∗∗

(0.150) (0.140) (0.265) (0.041) (0.041) (0.043)
Controls × × × × × ×
Region FE × ×
Region × Year FE × ×

Notes: Results for the DIDNNM estimator. All regressions control for house-level characteristics and city-
level attributes described in Table 3. Panel A: N treated = 2,194, N control = 3,604. Panel B: N treated =
229, N control = 254. Panel C: N treated = 764, N control = 1,681. Standard errors clustered by region in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 6: The Impact of Mine Openings by Water Pollution Levels

Regarding water pollution, the results in panel B of Table 6 suggest that new conventional

mines generates a zero baseline impact on rental prices, yet this effect becomes significant

in areas with high levels of water pollution. The result for the water pollution index in

column (3) indicates that rental prices decrease by 70% in cities hosting new conventional

mining activity whenever the water pollution index increases by one standard deviation. This

result holds after replacing this index with TSS, although it shows a significant decrease in

magnitud, potentially due to a disparity between subjective perceptions of water pollution

and the TSS.28 For artisanal openings (panel C) and the water pollution index, the results

for their high reliance on pickup trucks for their operations, as they facilitate the transportation of workers
and equipment across different facilities (Paredes and Rivera, 2017). Hence, it is not surprising that a high
concentration of this type of mines could also boost CO emissions and other harmful pollutants from vehicle
emissions. This could also explain the high magnitude of the estimates on PM2.5.

28Limited households’ awareness regarding recreational water pollution, and the irrelevance of this char-
acteristic when it comes to households’ location decisions (Boyle and Kiel, 2001), might explain the disparity
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suggest a negative but insignificant effect. When this index is replaced with the TSS metric,

artisanal mine openings show a strong 10-17% decrease on rental prices for a one unit increase

in water pollution. The lack of significant results of artisanal openings and air pollution in

Table 5, together with the insignificant baseline impact of these openings in Table 6 once the

TSS is included, are presumably indicating that the detrimental impact of artisanal openings

on rental prices is mostly related to water contamination.

6.3 Heterogeneous Effects by Type of Residents

The answer to whether mining is an environmental disamenity is conditional on whether

individuals sort across space based on their preferences for environmental quality. With

this type of sorting, rent compensations due to poor environmental quality might not be

homogeneous in areas exposed to pollution as some of their residents would downplay the

disamenity effect from the resource extraction. To test this idea, households of treated and

control cities are split into old and new residents, and their results displayed in Table 7.29

Estimates in Table 7 indicate that old residents of areas with new mines are willing to

pay more to avoid this activity than new residents. These results are strongly statistically

significant, except for residents of cities with new conventional openings where the sample

size is smaller. In the preferred estimations (column (3)), old residents of cities with general

openings are willing to pay 8 percent more than new residents to avoid this activity (panel A),

and 7% to avoid new artisanal activity (panel C). These results are a strong indication that

residents new to mining tows might have a lower sensitivity to environmental degradation.30

In this case, the results in Table 4 (and A6) represent an average rent gradient, averaged

between subjective reports on water pollution and more objective indicators.
29Households in 2015 CASEN report their 2010 city of residence, which defines people as either old

residents (i.e. households living in their current city for at least five years), or new residents (i.e. households
that during the last five years moved into their current city).

30Another explanation is that newcomers, due to their recent relocation, might not be fully aware of the
environmental and social changes affecting their neighborhoods. Even when this is a possibility, some of the
disparities observed in Tables 5 and 6 between objective and subjective measures of environmental pollution
reinforce the idea that some households may be indifferent to environmental degradation.
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across different subgroups of population.31

(1) (2) (3) (4) (5) (6)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.382∗∗ -0.157∗∗ -0.221∗∗∗ -0.247∗∗∗ -0.239∗∗∗ -0.251∗∗∗

(0.149) (0.073) (0.060) (0.068) (0.053) (0.062)
1[T ] × 1[After] × 1[Old Resident] -0.341∗∗∗ -0.100∗∗ -0.081∗∗ -0.097∗∗ -0.086∗∗ -0.085∗∗

(0.044) (0.035) (0.028) (0.033) (0.027) (0.028)

Panel B. Only Conventional Openings:
1[T ] × 1[After] -0.194 -0.107 -0.243 -0.127 -0.186 -0.170

(0.202) (0.208) (0.201) (0.188) (0.191) (0.204)
1[T ] × 1[After] × 1[Old Resident] -0.176 -0.038 -0.042 -0.035 -0.047 -0.049

(0.126) (0.148) (0.152) (0.150) (0.151) (0.153)

Panel C. Only Artisanal Openings:
1[T ] × 1[After] -0.352 -0.149∗∗ -0.196∗∗∗ -0.234∗∗ -0.229∗∗∗ -0.246∗∗∗

(0.290) (0.058) (0.048) (0.070) (0.050) (0.046)
1[T ] × 1[After] × 1[Old Resident] -0.244∗∗ -0.071∗ -0.064 -0.069∗ -0.069∗ -0.068∗

(0.109) (0.040) (0.039) (0.039) (0.037) (0.040)
Controls × × × × ×
Air and Water Pollution × × ×
Region FE × ×
Region × Year FE × ×

Notes: Results for the DIDNNM estimator. Matching on every period using 1:1 nearest-neighbor matching
procedure that requires now an exact match by type of resident. Controls include house-level characteristics
and city-level attributes described in Table 3. Air and water pollution variables are the z-scores of their
respective pollution indexes. Panel A: N treated = 2,200, N control = 3,604. Panel B: N treated = 229,
N control = 254. Panel C: N treated = 770, N control = 1,681. Standard errors clustered by region in
parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 7: The Impact of Mine Openings by Type of Resident

6.4 Average Willingness-to-Pay Measures

Monthly average willingness-to-pay measures (WTP) to avoid proximity to the concen-

tration of mines are displayed in Table 8.32 These results reveal that households are willing to

31The fact that households can be split between old and new residents could indicate that estimations
using only new residents would solve the issue of mobility costs common to hedonic applications as these new
residents were recently part of an optimal decision process when moving. Inference regarding the equilibrium
of these new residents, however, should also consider the hedonic wage function as these residents took
their decision based not only on a rent-compensation but also on a wage-compensation (Roback, 1982).
Results in Table 7 constitute preliminary evidence that new residents may have weaker preferences for
environmental quality as they receive lower rent-compensations when moving to less pleasant areas. Yet,
more comprehensive conclusions should be derived after estimating a hedonic wage function, which is outside
the scope of this paper.

32As extraction sites are known to affect environmental quality and so to disrupt social activities, estimates
in Table 8 constitute an overall measure of the local impact of mining that goes beyond air and water
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pay a premium to avoid proximity to the concentration of new mines, or in other words, that

they are compensated for living in proximity to this activity. Particularly, renters are com-

pensated monthly with roughly USD 30-62 for living near to new mining activity (equivalent

to a 7-14% of the country’s minimum wage).33 The higher premium (USD 62) takes place in

areas with a concentration of artisanal mines, potentially because of the low local economic

benefits of this activity, which are insufficient to offset its unintended negative effects. The

results in Table 8 are expected to draw the attention of policy makers and regulators when it

comes to the management of mining, particularly when it comes to small-scale and artisanal

operations.

All-Mine Only Conventional Only Artisanal
Openings Openings Openings

Avoid Proximity to Mines -47.2∗∗ -29.7∗∗ 61.6∗∗∗

Notes: Calculations using estimates in column (3) of Table 4 for each of the treatments. Monthly rental price
calculated with the total number of observations used in the estimation. Dollar value: CH$700. Standard
errors calculated using the Delta Method. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 8: Average Willingness-to-Pay Measures (Monthly USD)

6.5 Robustness Checks

Previous results of the impact of mine openings on rental prices are robust to several other

specifications. Table 9 displays the impact of opening either open-pit mines or underground

mines as alternative treatments. Open-pit mining, or strip mining, is a surface mining

technique that entails the extraction of vast amounts of the ore placed in the ground by their

elimination from an open pit. Because the excavation remains open to the surface for the

duration of the mine’s life, open-pit sites generally feature large amounts of air pollution and

dust, sound pollution, and ground vibration, increasing the likelihood of higher detrimental

degradation.
33Huang and Lanz (2018) derive a WTP of USD 40.50 for a unit reduction in PM10 in China. In

2018, China’s GDP per capita (PPP) was USD 18,210.1, while Chile’s was USD 25,283.9. Source: https:

//data.worldbank.org
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effects on the environment than other mining techniques (Monjezi et al., 2009). Consistently,

the results for the effect of open-pit mines in Table 9 (panel A) suggest that households are

willing to pay more to avoid proximity to the concentration of open-pit mines. Findings for

the richest specification (column (3)) indicate a relatively high effect; households near open-

cast mining are compensated with rental prices that are 38 percent lower. When compared

to underground mining (panel B), the results suggest that the disamenity effect of proximity

to open-cast mining is higher than to underground mining.

(1) (2) (3) (4) (5) (6)

Panel A. Open-Pit Mining:
1[T ] × 1[After] -0.232∗ -0.235∗∗ -0.380∗∗ -0.241∗∗ -0.324∗∗ -0.445∗∗

(0.125) (0.109) (0.148) (0.114) (0.141) (0.153)
Panel B. Underground Mining:

1[T ] × 1[After] -0.122 -0.121 -0.152∗∗ -0.150∗ -0.105 -0.129
(0.122) (0.074) (0.069) (0.082) (0.094) (0.101)

Controls × × × × ×
Air and Water Pollution × × ×
Region FE ×
Region × Year FE × ×

Notes: Results for the DIDNNM estimator. Matching on every period using 1:1 nearest-neighbor matching
procedure that requires now an exact match by type of resident. Controls include house-level characteristics
and city-level attributes described in Table 3. Air and water pollution variables are the z-scores of their
respective pollution indexes. Standard errors clustered by region in parentheses. Significance levels: ∗p <
0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table 9: Robustness Check: The Impact of New Open-Pit and New Underground Mines

To rule out the possibility that the DIDNNM results are driven by the choice of the

matching method, Table A8 (Appendix) displays the estimated causal effects but using

different matching techniques. The results in Table A8 are all statistically significant and

with the expected sign for all the different treatments. Rental prices are roughly 15-19

percent lower in areas around of all-mine openings (panel A), 24 percent lower in areas with

conventional openings (panel B), and around 19-25 percent lower in areas with artisanal

openings (panel C).

When lower rental prices in areas experiencing new mine openings are reflecting the

disamenity effect of new mining activity, then areas with a constant number of mines should
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exhibit a price vector that shows no significant variations due to this feature when compared

to control cities. Results for this falsification test are displayed in Table A9 (Appendix) using

the placebo group of cities as the treatment group. The results show that the placebo effect

on rental prices is not statistically different from zero, which constitutes strong evidence of

the validity of the previous causal effects.

A final concern is that new mining activity is boosting new housing construction leading to

depressed prices of the older rental housing stock. To rule out the possibility that estimated

causal effects are merely reflecting a new housing price vector from a supply expansion,

Table A10 (Appendix) displays the DID estimation results for the number of certificates

of occupancy issued during the study period. Certificates of occupancy indicate whether

new properties are in suitable conditions for occupancy after verified compliance with the

applicable housing codes. Hence, their issuance represents a proxy of the stock of housing

in each locality and for a given period. Findings for the average treatment effect of mine

openings on the number of issued certificates are all statistically insignificant, irrespective of

whether year 2015 or 2016 is considered. These results dismiss the possibility that a supply

shock is affecting housing in treated cities relative to control cities, or in other words, that

a new housing price vector is confounding identification. For the validity of this robustness

exercise, an overview of the common trends assumption for the number of these certificates

issued during pre-treatment years is displayed in Figure A6 (Appendix).

6.6 Potential Threats to the Validity of the DID Estimates

A valid concern on the previous results is that factors omitted from the analysis could

bias the estimation. Unfortunately, the lack of data on alternative measures of resource-

richness (e.g. ore reserves), or the multiple extraction of different minerals from the same

site, prevent the instrumentation of new site openings. Notwithstanding, this section discuss

the bias that could affect the results, and review some evidence that makes this possibility

implausible.
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Former studies show that the location of unpleasant facilities might not follow a random

process, and instead, be driven by the specific housing and demographic characteristics of

certain neighborhoods (Davis, 2011; Muehlenbachs et al., 2013b, 2015). When the location

of these facilities is not at random, correlated unobservables might confound identification

of causal effects. While the location of new extraction sites is mostly determined by the

exogenous geo-location of the resource, other variables such as resource booms or favorable

economic conditions might still influence firms’ decisions when considering opening a new

site as well as rental prices. In that event, unobservables will affect the treatment and the

outcome in the same direction, leading to upward biased estimates. Upward bias occurs

when the estimate β̂, is higher than the true parameter β, in which case the causal effect

would be overestimated. Results in this study, however, show a strong evidence that the

estimate of interest is less than zero, in which case β < β̂ < 0. In other words, and even in the

presence of upward biased estimates, statistically significant DID and DIDNNM estimates

in this study are sufficient to show the significance of the true disamenity effect.

A different argument might suggest that both the DID and the DIDNNM could be

downward biased as well. For instance, if the opening of polluting facilities occurs in cities

with poorer economic conditions, omitted variables would then affect the probability of mine

openings and rental prices in the opposite direction, biasing the estimates towards zero. In

such case, statistically significant estimates are not enough to show the significance of the

true effect. This situation, however, is ruled out by the DID specification that controls for

time-constant unobservable factors common to either treated or control cities. Full results

for the hedonic DID estimations (available upon request) show no statistically significant

differences in pre-treatment rental prices among houses in treated and control cities. In fact,

the common trends assumption in Figure A5 (Appendix) suggests that rental prices can be

either lower (cities with conventional openings) or higher (cities with artisanal openings)

than in control cities. Additionally, mineral resources in Chile are owned by the national

government, as opposed to the U.S., where they are owned by private individuals. This
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implies that mining companies do not have to engage in leasing contracts with privates as

a manner of initiating the extraction, which limits the ability of households with common

susceptibilities towards the extraction process to affect the extraction decision. Finally, and

despite the existence of a political committee that decides the mine’s future in cases of social

dispute with social or environmental movements, members of this committee respond directly

to Chile’s president, which minimizes the likelihood of local influence.34,35 To this date, this

committee has mediated in only one opportunity, rejecting the project under consideration.36

One last concern is the existence of announcement effects. If people anticipate to the

opening of a new mine, then the previous estimates constitute a lower bound of the true effect

as some individuals may have already adjusted their expectations to a potential degradation

in their neighborhoods. On the other hand, the possibility that current estimates could be

reflecting expectations about future openings instead, is eliminated by the DID specification

whenever these future expectations are common to places with current openings.

7. Conclusions

Millions of people live in countries rich in natural resources, but all too often they are

exposed to heavy environmental and social impacts from their extraction. Despite previous

studies having addressed some of the local economic impacts of extractive industries, this

work is pioneering in providing an empirical understanding of the negative environmental

and social aspects of these operations on the housing market. Using spatial and temporal

variation in the concentration of new mines in Chile, this paper documents the existence of

the massive negative net effects of the concentration of new extraction sites on rental market

prices of residential properties. Results show that, on average, households are willing to pay

34Particularly, these members are the heads of the Ministries of Environment, of Mining, of Economics, of
Energy, of Health, and of Agriculture, with the minister of Environment as the chair of the entire committee.

35Low levels of corruption in Chile minimize the possibility that bribery could be driving some of the results
as well. Currently, Chile is second least corrupt country in Latin America, with a rank of 27/180 according
to the Corruption Perception Index by Transparency International. Source: https://www.transparency.

org/cpi2018
36Source: http://www.mining.com/chile-rejects-divisive-2-5-billion-dominga-copper-iron-project
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between 30 and 62 USD to avoid proximity to the concentration of mines, which represents a

7-14% of the country’s legal minimum wage. Further analyses show that this compensation

is more significant in areas with high air and water quality degradation, and among long-

term residents of mining areas. The fact that new residents of mining counties are willing to

accept lower rental compensations suggests a preference-based sorting of households across

space.

Previous studies on the local impact of digging activities are generally focused on lo-

cal labor market effects, poverty levels, and real income effects, with little guidance on the

negative externalities of extraction. This study shows empirical evidence of the economic rel-

evance of these aspects, mostly for individuals who could be constrained to move away from

this activity. Omitting the heavy environmental and social impacts from digging activities

could therefore lead to misleading conclusions regarding the social benefits of this industry,

particularly in settings where many of these sites are left abandoned after operations cease

increasing the risks of accidents and/or environmental disasters. One of the main contribu-

tions of this paper is to provide evidence, framed in a causality design, that this activity

represents indeed an environmental and social disamenity to nearby residents. Additionally,

this study shows the need for more attentiveness around the social welfare effects of extrac-

tive industries in future research that quantify the impacts of mining, particularly in places

with a heavy economic reliance on this activity.

This study can be improved in several ways. Data availability on residential properties

that were sold during the treatment period could provide insights into the long-term effects

of mine openings. Access to rental prices for more than two periods could also help to

understand whether the negative impacts of mining persist over time. Finally, full access to

the geo-location of residential properties could bring to light whether the net negative effects

of mining dissipate with distance to the extraction sites.
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A. Appendix

Notes: The ores extracted are mostly copper, silver, gold, zinc, iodine, lithium, molybdenum, natural
nitrates, and rhenium. Sites plotted with ArcMapR© 10.1 using information from SERNAGEOMIN, Online,
accessed May 12, 2016. Red dots symbolize conventional site openings and blue dots are for Artisanal sites.

Figure A1: Resource Extraction Site Openings Between 2011-2016
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(a) Treated, Control, and Placebo Cities

(b) Treatments Example

Notes: Panel (a) depicts different scenarios that allow the classification of cities as either treated, control, or
placebo cities, or cities to dismiss from the analysis. Type-A cities are cities that over time have a constant
number of mining sites, and so they are part of a placebo group of cities. Type-B cities are cities that over
time experienced the closure and the opening of different types of mines, and therefore, they are dismissed
from the analysis. Type-C cities are cities that for each year show no records of mine sitings. These cities
belong to the control group of cities. Finally, type-D cities are cities that experienced the siting of a new
mine, and therefore, they are part of a treated group of cities. Panel (b) displays the treatments considered in
the analysis. Type-A cities are cities that host the opening of an artisanal mine only. Type-B cities are cities
that host the opening of a new conventional mine and a new artisanal mine, that is, “all-mine openings”.
Type-C cities are control cities, while type-D cities are cities that host the opening of a conventional mine
only.

Figure A2: Example of Treated, Control, and Placebo Cities, and Treatments
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Type of Site
Year Number of

2011 2016 Openings Closings

Conventional Sites 1,324 4,093 3,537 768
Open-Pit 249 615 496 130
Underground 703 1,504 1,275 474
Tailings 58 634 593 17
Others 314 1,340 1,173 147

Artisanal Sites 3,920 3,590 2,943 3,273

Total 5,244 7,683 6,480 4,041

Notes: Other Conventional Sites include mineral processing sites and ex-
ploration deposits. Both Conventional and Artisanal Sites exclude adminis-
tration facilities.

Table A1: Extraction Sites Over Time
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Figure A3: Overview of Treated, Control, and Placebo Cities
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Variable Mean St. Dev. Min. Max.

Rental Price 135,590.1 100,199.1 10,000 790,000
# Bedrooms 2.3 0.9 0 12
# Bathrooms 1.2 0.5 0 6
Dimension:

Less than 30m2 0.1 0.3 0 1
Between 30-40m2 0.2 0.4 0 1
Between 41-60m2 0.4 0.5 0 1
Between 61-100m2 0.2 0.4 0 1
Between 101-150m2 0.1 0.2 0 1
More than 150m2 0.0 0.1 0 1

Density (km2) 3,039.6 4,682.8 0.42 17,145
Crime (per 1,000/inab.) 4,453.4 4,110.4 450 22,149
Waste Disposal (%) 0.3 0.1 0 1
Poverty (%) 15.7 8.8 0.2 60
# of Parks (p.c.) 0.1 0.4 0 6
# of Public Squares (p.c.) 1.4 5.9 0 136

N 13,687

Notes: The crime variable considers criminal offenses of strong social connotation. p.c. = per capita.

Table A2: Descriptive Statistics of Main Variables
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Variable Category (1) (2) (3) (4) (5)

Air Pollution

Never 7,913 3,957 0 3,957 0.3044
Few times 2,578 1,289 7,913 9,202 0.7080
Frequently 1,419 710 10,491 11,201 0.8617

Always 1,088 544 11,910 12,454 0.9581
Total 12,998 12,998

Water Pollution

Never 11,533 5,767 0 5,767 0.4436
Few times 753 377 11,533 11,910 0.9163
Frequently 373 187 12,286 12,473 0.9596

Always 339 170 12,659 12,829 0.9870
Total 12,998 12,998

Notes: Based on Bross (1958), the approach assigns the continuous index number
as half the share of the observations in each response category’s upper and lower cu-
mulative percentiles. For example, column (1) has the frequency distribution of the
identified distribution. In this case, the identified distribution considers the national
population of households renting a house. Column (2) has one-half of the correspond-
ing entry in column (1). Column (3) has the cumulate of column (1) displaced one
category upward. Column (4) = column (2) + column (3). Entries in column (5)
represent the ridits equivalent to column (4) divided by grand total in (1).

Table A3: Ridits on Air and Water Pollution Perceptions
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Response Variable Covariates Coeff. Std. Error

Air Pollution (N = 310)

PM25 0.411∗∗ (0.174)
CO 0.008∗ (0.004)

NOX 0.034 (0.074)
SO2 0.032 (0.034)

Water Pollution (N = 311)
TSS -0.143∗∗∗ (0.031)

Streamflow -0.067 (0.044)
Density -0.004∗∗∗ (0.001)

Notes: Results from a cross-section Bernoulli QMLE fractional logit regression
for 2015 on cities’ average pollution perceptions. p-values calculated using stan-
dard errors robust to a misspecification of the Bernoulli generalized linear model
variance assumption. Variables on pollutant emissions are measured in thousand
of tons/year. Streamflow refers to the regional monthly average streamflow of
main rivers measured in L/seg. Density is measured in #thousand of inab./km2

Table A4: Average Marginal Effects on Pollution Perceptions

Results in Table A4 for air pollution indicate that PM2.5, CO, NOX , and SO2 emissions
are all positively related with households’ perceptions of bad air quality. In terms of water
pollution perceptions, results indicate a counterintuitive sign for TSS. Regarding stream flow
and cities’ density, higher values for these variables are negatively related to water pollu-
tion perceptions. Higher stream flows nearby may be negatively related to water pollution
perceptions because streams assimilative capacity (i.e. the stream capacity to reduce pollu-
tant concentrations) increase with the streamflow magnitude. A higher population density,
instead, might be negatively related to water pollution perceptions due to a lower variety
of water reservoirs available for recreation in high dense areas, which might affect their
perceptions on the contamination of these waterbodies.

54



Variable Period Mean Std. Dev. Min Max N Cities

Air Pollution
2011 0.527 0.082 0.469 0.996 345
2015 0.474 0.116 0.307 0.959 310

Water Pollution
2011 0.528 0.012 0.482 0.539 293
2015 0.509 0.074 0.442 0.958 311

Table A5: Descriptive Statistics on Cities’ Average Pollution Perceptions
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(a) All-Mine Openings (b) Only Conventional Openings

(c) Only Artisanal Openings (d) Placebo Group

Notes: Considering tenants with a single family nucleus. Pre-treatment periods are 2009, and 2011, with
information retrieved from Ministerio de Desarrollo Social (2009, 2011).

Figure A4: Overview of the Common Trends Assumption. Baseline Sample.

Two things from Figure A4 are worth mentioning. Overall, the common pre-treatment
trends assumption fits the data well. Pre-treatment rental prices of homes in treated cities
show a trend that is parallel to the one for homes in control cities for all the three treatments
(panels a, b, and c) and for the placebo group (panel d). In addition, rental prices are higher
in cities that host artisanal openings, a feature that is especially noteworthy because, as
Section 6 shows, these are the openings that are strongly correlated with reductions in
rental prices. A plausible explanation for this trend is the reduced comparability among
houses in treated and control cities as shown in panel A of Table 2.
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(a) All-Mine Openings (b) Only Conventional Openings

(c) Only Artisanal Openings (d) Placebo Group

Notes: Considering tenants with a single family nucleus. Pre-treatment periods are 2009, and 2011, with
information retrieved from Ministerio de Desarrollo Social (2009, 2011).

Figure A5: Overview of the Common Trends Assumption. Matched Sample.

Although pre-existing trends in rental prices are still common to homes in cities affected
with the treatments and homes in the control group, the gap between these prices shrinks
once units in the treatment groups are matched to comparable homes in the control group.
Even more important is the change in these trends in cities affected with all-mine openings
(panel a) and artisanal mine openings (panel c). A visual analysis of Figure A5 suggest a
negative treatment effect in all cities treated with mine openings of any kind (panels a, b,
and c).
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(1) (2) (3) (4) (5) (6)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.050 -0.063∗ -0.114∗∗ -0.121∗∗ -0.129∗∗ -0.121∗∗

(0.064) (0.036) (0.051) (0.044) (0.040) (0.044)
N treated 3,724 3,161 3,161 3,144 3,144 3,144
N control 9,963 8,141 8,141 7,868 7,868 7,868

Panel B. Only Conventional Openings:
1[T ] × 1[After] -0.185∗∗ -0.158∗ -0.246∗∗ -0.259∗∗ -0.198∗∗ -0.259∗∗

(0.090) (0.087) (0.084) (0.084) (0.075) (0.084)
N treated 394 306 306 301 301 301
N control 9,963 8,141 8,141 7,868 7,868 7,868

Panel C. Only Artisanal Openings:
1[T ] × 1[After] -0.033 -0.113 -0.119 -0.108∗ -0.146∗∗ -0.108∗

(0.080) (0.071) (0.086) (0.056) (0.060) (0.056)
N treated 1,550 1,219 1,219 1,219 1,219 1,219
N control 9,963 8,141 8,141 7,868 7,868 7,868

Controls × × × × ×
Air and Water Pollution × × ×
Region FE × ×
Region × Year FE × ×

Notes: Using rental prices in logs as the response variable. Controls include house-level characteristics and
city-level attributes described in Table 2. Air and water pollution variables are the z-scores of their respective
pollution indexes. Standard errors clustered by region in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

Table A6: The Impact of Mine Openings on Rental Prices: Spatial DID

Results in columns (1), (2) and (3) reveal that, on average, rental prices are 6-11 percent
lower in cities that concentrate all-mine openings (panel A), around 19-25 percent lower in
cities exposed to conventional openings (panel B), and around 11-12 percent lower in cities
with artisanal mine openings (panel C). These results are statistically significant mostly for
the richest specifications (column (3)). As expected, these impacts decrease in magnitude
after the inclusion of the air and water pollution variables (indexes), particularly for all-mine
openings and artisanal mine openings. On average, households are compensated with rental
prices that are around 9-11 percent lower in cities with all-mine openings (panel A), around
18-26 percent lower in cities with conventional openings (panel B), and around 9-10 percent
lower in cities with artisanal mine openings (panel C). All these estimates are statistically
different from zero.
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CO NOX

(1) (2) (3) (1) (2) (3)

Panel A. All-Mine Openings:
1[T ] × 1[After] -0.104∗ -0.183∗∗∗ -0.195∗∗∗ -0.082 -0.169∗∗∗ -0.176∗∗

(0.058) (0.049) (0.053) (0.061) (0.048) (0.055)
1[T ] × 1[After] × Pollution -0.016 -0.007 -0.009 -0.020 -0.048∗∗∗ -0.050∗∗∗

(0.026) (0.023) (0.023) (0.015) (0.012) (0.012)

Panel B. Only Conventional Openings:
1[T ] × 1[After] -0.017 0.040 0.077 0.040 0.025 0.160

(0.122) (0.127) (0.131) (0.115) (0.125) (0.133)
1[T ] × 1[After] × Pollution -0.150∗ -0.244∗∗ -0.293∗∗∗ -0.033∗ -0.057∗∗ -0.075∗∗∗

(0.082) (0.079) (0.063) (0.019) (0.022) (0.016)

Panel C. Only Artisanal Openings:
1[T ] × 1[After] -0.363∗∗ -0.152 -0.121 0.100 -0.262∗ -0.187

(0.112) (0.127) (0.0740) (0.170) (0.154) (0.159)
1[T ] × 1[After] × Pollution 0.141 0.016 -0.092 -0.619∗∗∗ -0.524∗∗∗ -0.864∗∗

(0.089) (0.064) (0.056) (0.177) (0.102) (0.391)
Controls × × × × × ×
Region FE × ×
Region × Year FE × ×

Notes: Results for the DIDNNM estimator. Matching on every period using 1:1 nearest-neighbor matching
procedure that requires now an exact match by type of resident. Controls include house-level characteristics
and city-level attributes described in Table 3. Standard errors clustered by region in parentheses. Significance
levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table A7: The Impact of Mine Openings by Air Pollution Levels: CO and NOX
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Five Caliper Euclidean
Neighbors (0.0001) Distance

(1) (2) (3)

Panel A. All-Mine Openings
1[T ] × 1[After] -0.148∗∗ -0.187∗∗ -0.179∗

(0.064) (0.056) (0.084)
N treated 1,840 2,212 2,212
N control 12,285 3,663 3,636

Panel B. Only Conventional Openings
1[T ] × 1[After] -0.241∗ -0.103 -0.241∗

(0.118) (0.142) (0.107)
N treated 165 231 231
N control 850 270 283

Panel C. Only Artisanal Openings
1[T ] × 1[After] -0.193∗∗ -0.252∗∗∗ -0.244∗∗

(0.039) (0.029) (0.050)
N treated 763 770 770
N control 6,263 1,697 1,697

Controls × × ×
Air and Water Pollution × × ×
Region × Year FE × × ×

Notes: Matching on every period. All matching procedures require an exact match in all categorical
variables included in the original hedonic-price estimation. Both Caliper and Euclidean distance matching
require a 1:1 match. Standard errors clustered by region in parentheses. Significance levels: ∗p < 0.10,
∗∗p < 0.05, ∗∗∗p < 0.001.

Table A8: Robustness Check: Different Matching Procedures

Original Matched Sample

Sample
One Five

Caliper
Euclidean

Neighbor Neighbor Distance

1[Placebo] × 1[After] -0.026 -0.046 -0.078 -0.131 -0.091 -0.131 -0.032
(0.032) (0.052) (0.055) (0.084) (0.074) (0.084) (0.042)

N placebo 972 972 759 759 481 759 759
N control 8,592 8,592 868 868 2,439 868 927

Region FE × ×
Region × Year FE × × × × ×

Notes: Control variables and pollution indexes are included in all the specifications. Matching on every
period. All matching procedures require an exact match in all categorical variables included in the original
hedonic-price estimation. Both Caliper and Euclidean distance matching require a 1:1 match. Standard
errors clustered by region in parentheses. Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table A9: Robustness Check: Placebo Group
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All-Mine Only Conventional Only Artisanal
Openings Mine Openings Mine Openings

(1) (2) (3) (4) (5) (6)

1[T ] × 1[2015] -208.4 -111.6 -98.87
(132.4) (139.3) (124.1)

1[T ] × 1[2016] -67.33 -51.30 70.37
(62.62) (46.25) (122.0)

N 442 435 367 363 365 360

Notes: Data from SINIM. Using the number of certificates of occupancy as the response variable. All
regressions include city and region × year fixed effects. Standard errors clustered by region in parentheses.
Significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.001.

Table A10: Robustness Check: Certificates of Occupancy
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Notes: Excluding two cities with abnormalities in their reports: Huasco (all-mine openings) and Vitacura
(control). Source: SINIM (2017).

Figure A6: Overview of the Common Trends Assumption on Certificates of Occupancy.
Pre-treatment Periods
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