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Institutional Heterogeneity in Social Dilemma Games: 
A Bayesian Examination 

 

 

Abstract: 

A main research focus in many Social Dilemma Games is the suitability of external institutional 

treatments in inducing socially optimal outcomes.  It is likely that participating subjects exhibit 

unobserved heterogeneity in their reaction to these treatments. This type of “institutional heterogeneity” 

has to date not found much attention in the experimental literature.  We propose a Hierarchical Bayesian 

estimation framework to highlight these heterogeneity effects.  We illustrate that models that ignore 

treatment-specific heterogeneity can severely under-estimate the variability in treatment-induced 

decisions amongst the subject population.  The resulting misleading picture of comparative treatment 

effects can lead to sub-optimal institutional choices and related policy decisions. 
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I ) Introduction 

Social Dilemma (SD) Experiments, such as Public Good (PG) games and Common Pool 

Resource (CPR) games, are designed to create a gap between the game-theoretic equilibrium strategy and 

the socially optimal course of action.   This cleft in payoffs and the group structure of the experimental 

setup leaves considerable room for “other-regarding” and “other-dependent” forces such as altruism, 

inequity aversion, reputation-building, compliance with norms, and conditional cooperation to take root 

and affect observed outcomes.  It is thus not surprising that in most existing applications experimentalists 

have focused on the identification of these different behavioral motives amongst SD game participants 

(e.g. Andreoni, 1995, Anderson et al., 1998, Brandts and Schram, 2001, Fischbacher et al., 2001, Kurzban 

et al., 2001, Velez et al., Forthcoming(b)).   

However, in some SD games an equally important if not primary experimental focus rests on the 

effect of public institutions and policies on players’ allocation or extraction decisions (e.g. Ostrom et al., 

1994, Ostmann, 1998, Beckenkamp and Ostmann, 1999, Cardenas et al., 2000, Vyrastekova and Soest, 

2003, Bischoff, 2007, Velez et al., Forthcoming(a)).  Such institutions are represented via exogenous 

treatments added to the game structure, such as quotas, penalties, open communication, and voting 

mechanisms.  In many instances SD games with focus on policy effects are implemented as field 

experiments.  In such experiments the subject pool is by definition closely linked to important real-world 

aspects of the game, such as the nature of the commodity under consideration, and /or the nature of the 

choice tasks or trading rules embedded in the experimental framework (Harrison and List, 2004, List, 

2006).  Thus, field experiments with an institutional treatment component have ex ante considerable 

potential to inform real-world policy prescriptions for the management of the natural resource targeted by 

the experiment (Cardenas and Ostrom, 2004). 

Another important consideration in the analysis of data from SD games is the likely presence of 

unobserved individual heterogeneity in underlying beliefs and preferences, which can, at least in part, 

drive observed differences in decisions and outcomes.  There is considerable evidence in existing research 

that these effects exist and that players subscribe to them in heterogeneous fashion (e.g. Palfrey and 
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Prisbrey, 1996, Palfrey and Prisbrey, 1997,  Anderson et al., 1998, Casari and Plott, 2003).  In SD games 

with an external policy components additional heterogeneity effects are likely introduced due to the 

difference in how subjects react to prescribed treatments.  Somewhat surprisingly, this type of 

“institutional heterogeneity” has to date not received much attention in the existing literature. 

In this chapter we propose a fully parametric econometric framework for the analysis of SD data 

that is well-suited to capture unobserved subject heterogeneity in treatment effects.  Using the hierarchical 

doubly-truncated Poisson (HDTP) model recently described in Moeltner et al. (2008) and data from a 

CPR field experiment in two artisanal fishing regions in Colombia we find clear evidence that subjects 

react to institutional treatments in heterogeneous fashion.  Equally important, the extent of the resulting 

variability in induced decisions varies over subject populations and treatments.  We also find that a 

“naïve” model that only allows for unobserved heterogeneity of a general nature severely under-estimates 

the variability in treatment-induced decisions amongst the subject population.  This produces a misleading 

picture of comparative treatment effects on resource extraction, and could lead to sub-optimal institutional 

choices if the results of the SD experiment were used to inform resource policies.   

We use a Bayesian estimation approach to derive these findings.  The Bayesian framework offers 

the following analytical advantages over a classical approach: (i) it avoids the computational difficulties 

that would arise in Maximum Likelihood (ML) estimation of a hierarchical, nonlinear model with limited 

outcome space such as the HDTP, (ii) it allows for a rigorous and straightforward comparison of non-

nested models via marginal likelihoods and Bayes Factors, (iii) it offers the option of using the first few 

rounds of a given game to generate informed priors that can then be refined using the remaining data, (iv) 

it can easily generate posterior distributions for predictive outcomes of interest as a simple extension of its 

core algorithm, and (v) it offers a rigorous statistical framework for combining predictive densities across 

subject populations.  

The remainder of this manuscript is structured as follows: The next section introduces the 

econometric framework and competing models.  Section III briefly describes the field experiment, 
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illustrates the empirical implementation of our models, and discusses estimation results.   Concluding 

remarks are given in Section IV. 

 

III) Econometric Framework and Models 

General Framework 

For consistency with our empirical application we will cast our discussion in the context of a CPR 

game where each player 1i n   in each of 1p P   repetitions of the game (“periods”) has to choose a 

level of resource extraction or “harvest” ipy  from a given integer range, i.e. 

 min min max max, 1, , 1,ipy E E E E   .   In each period players may be exposed to one of several possible 

exogenous policy treatments, 1t T  , such as harvest quotas with different levels of enforcement, the 

ability to punish deviations from socially efficient outcomes, or simply the opportunity to communicate 

prior to choosing harvest levels.   

Moeltner et al. (2008) show that the HDTP framework is better suited to process the data from 

such an experimental setup than models based on underlying continuous latent variables (e.g. Palfrey and 

Prisbrey, 1996, Carpenter, 2004, Bardsley and Moffatt, 2007, Velez et al., Forthcoming(a), Velez et al., 

Forthcoming(b)).  In the HDTP, the density function for observed effort level yip is given as 

   
 
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

i ip i ix β h γ γ γ Σ

 (1) 

As shown in the last line of (1) subject-specific characteristics and treatment effects are introduced into 

this model via the conditional mean or “link” function ip .  Specifically, xi is a vector of period-invariant 

individual characteristics, and 1, 2, ,ip ip T ipT T T    iph  is a vector of 0/1 treatment indicators that 

may change over periods and subjects.  To be specific, for each treatment or treatment combination that 
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applies to person i in period p, the corresponding indicator terms in iph are set to one, with the other 

indicators held at zero.  Vector β  includes all fixed coefficients, and iγ  comprises individual-specific 

random coefficients.  Given the focus of this study these random coefficients are the key feature of the 

model, as they capture unobserved subject heterogeneity in the effect of experimental treatments on 

harvest.  As indicated in (1) we model them to follow a multivariate normal distribution with mean γ and 

variance matrix Σ .   

As discussed in more detail in Moeltner et al. (2008) for the dual reasons of truncation and 

parameter heterogeneity the mean-variance-equality constraint of the standard Poisson density is relaxed 

in the HDTP.   Furthermore, the random coefficients in ip introduce correlation between decisions made 

by a given individual over the P periods of the game.  The likelihood function for the HDTP is given as 

   min max
1 1

| , , , | ,

!
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ip ip kU
i p ip

ip
k L

p y E y E f d
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 
i

i i

γ

β γ Σ γ γ Σ γ  (2) 

 
This would complete our model description in a classical framework.  The analyst would choose a set of 

starting values for all model parameters and a computational algorithm to find the set of estimates that 

maximizes the likelihood function.   

The Bayesian approach requires the specification of prior densities for all parameters.  Its 

objective is to derive the joint posterior density, which, using Bayes’ Rule, can be written as 

     
     |

| |
p p

p p p
p

 
y θ θ

θ y y θ θ
y

  (3) 

  where  |p y θ  is the sample likelihood,  p θ is the prior density, and  p y is the marginal likelihood.  

The latter construct will play an important role in model comparison, as discussed below, but can be 

treated as a normalization constant in the derivation of the posterior as it does not include θ .  In other 
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words, to derive the posterior distribution we can focus on the product of the likelihood and the prior, 

which is “proportional” to the full posterior density as indicated in (3).1   

For our HDTP framework our set of parameters, generically denoted as θ above,  includes , ,β γ

and the unique elements in Σ .  Based on natural parameter restrictions and computational convenience 

we specify multivariate normal priors for β and γ  and an inverse gamma prior for the diagonal elements 

of Σ , i.e. 

     0 0~ , , ~ , , ~ , , 1jj rmvn mvn ig v j k β β γ γβ μ V γ μ V Σ   (4) 

This implies that we are setting the covariances in Σ to zero.  This restriction is generally not required for 

the HDTP.  It is imposed at this stage solely to align our theoretical model exposition with our empirical 

application, where covariances between random treatment effect were found to be poorly identified, with 

posterior means close to zero.  For a full (unrestricted) Σ  a suitable and convenient prior would be the 

Inverse-Wishart (IW) density. 

The core component of our Bayesian estimation is a Gibbs Sampler, i.e. a posterior simulator that 

draws sequentially and repeatedly from the following conditional probabilities: 

   
   

| , , , , , 1 , | , , , , , 1 ,

| , , 1 , 1 , and   | , , , , , , 1jj r

p i n p i n

p i n j k p i n

 

  

i i

i i i i i

β y X H Σ γ γ y X H Σ γ

Σ γ γ γ y X H β Σ γ

 

  
 (5) 

Matrices X and H comprise, respectively, vectors ix  and iph , for all individuals and periods, and 

matrices iX and iH  perform the same function for a given individual across all periods.  Draws of β and 

iγ  require a Metropolis-Hastings (MH) sub-routine, as described in Chib et al. (1998) for the un-truncated 

hierarchical Poisson model.  After a sufficient number of repetitions the conditional draws of ,β γ  and Σ  

will converge to the joint posterior distribution  , , | , ,p β γ Σ y X H .  Furthermore, each series of draws for 

a given subset of parameters by itself represents draws from the respective marginal posterior.  

Econometric inference can then be conducted through an inspection of the shape and / or the moments of 
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these marginal distributions.  We refer the reader to Moeltner et al.'s (2008) Appendix C for more details 

on these conditional densities and the posterior algorithm. 

 

Marginal Likelihood and Model Selection 

As described in more detail in the next section we will estimate two different models, 

distinguished by the contents and hierarchical properties of treatment vector iph in (1).  These models are 

non-nested, i.e. one cannot be derived from the other by imposing a set of parameter restrictions.  This 

would render a rigorous model comparison difficult in a classical estimation framework, but does not 

pose a problem in a Bayesian approach. 

In Bayesian analysis, a “model” is defined by the prior densities chosen for its parameters and the 

form of its likelihood function.  The basic building block for Bayesian model comparison is the marginal 

likelihood (mLH) for a given model m, generically expressed as 

       | | , |p y m p y m p m d 
θ

θ θ θ   ( 6) 

As discussed e.g. in Lancaster (2004, Ch. 2) the marginal likelihood or “prior predictive distribution”  can 

be interpreted as describing what new data are expected to look like before they are collected, given the 

researcher’s choice of likelihood function and prior.  It is then evaluated for collected data y , 

conceptually by replacing the generic random variable y with data vector y in ( 6).   

The mLH can then be used to derive the ratio of model probabilities or “posterior odds ratio” for 

two competing specifications (e.g.  Koop, 2004, Ch.1), given as 

 
 

   
   

1 1 1

2 2 2

| |

| |

p m p m p m

p m p m p m


y y

y y
  (7) 

where  |p my is the model- conditioned marginal likelihood evaluated at the observed data, and  p m  

indicates the prior model probability, which is assigned by the researcher at the onset of the analysis.  As 

is evident from (7) under equal model priors the ratio of model probabilities for two competing 

specifications reduces to the ratio of marginal likelihoods. This ratio is commonly referred to as Bayes 
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Factors (BF) (e.g. Kass and Raftery, 1995).  It captures the relative probability that either model is the 

correct specification given the underlying data.   

The computational difficulty in deriving BF’s lies in the derivation of the mLH, which in most 

cases does not have a closed-form solution.  Instead, it has to be evaluated via approximation or 

simulation. 2  In this application we use the framework outlined in Chib (1995) and Chib and Jeliazkov 

(2001) to derive the value of the mLH via simulation.  This method starts by re-writing  Bayes’ Rule in 

(3) as  

     
 

| , |
| ,

| ,

p m p m
p m

p m


y θ θ
y

θ y
  (8) 

 
Since the left hand side of (8) does not contain θ , the relationship must hold for any choice of parameter 

values.  This property is deemed “marginal likelihood identity” in Chib (1995).  In practice,  |p my  is 

usually evaluated at a point of high posterior density for θ such as the posterior mean.  We evaluate the 

mLH in log form at the posterior mean for each model, i.e. we use 

            log | log | , log , log | ,p m p m p m p m  y y θ θ θ y  (9) 

 
where θ  denotes the posterior mean of all model parameters.  Thus, the log mLH for a given model will 

be high if the sample likelihood is high at the posterior mean (i.e. if the chosen likelihood function is 

supported by the data), and if the posterior density at θ  is not substantially larger than the prior ordinate 

at θ , controlling for the information content in y.   The latter condition implies that the prior was ex ante 

well-chosen.  Under vague priors the difference between posterior and prior ordinate in (9) will likely be 

considerable, especially if the parameter space is large.  In that case a high mLH score will largely rest on 

the appropriateness of the likelihood function.   While the first two densities on the right hand side of (9) 

are generally known, the evaluation of the full posterior distribution at θ requires additional reduced 

Gibbs Samplers, as described in Chib (1995) and Chib and Jeliazkov (2001).   
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Posterior Predictions 

The Gibbs sampler described above generates r=1…R draws of parameters.  These draws can 

then be used to derive posterior predictive distributions (PPDs) for outcomes of interest for any 

combination of individual characteristics and experimental treatments.  Given their importance in 

informing resource management policies we will focus on expected harvest levels in our application. We 

denote a specific predictive setting for our regressors as fx and fh , respectively.  Conceptually, the PPD 

for expected harvest,  | ,E y f fx h , can then be expressed as 

      
max max

min min

1

| , | , | , ,
! !

k yE E
if if

k E y E

y
p E y f d p d

k y

 


 

              
  

i

f f i i

θ γ

x h γ γ Σ γ θ y X H θ  (10) 

 
where if   f f ix β h γ  ,  and θ  comprises all model parameters.  For the HDTP the expectation over 

harvest is to be understood as the expectation over the truncated Poisson kernel, conditional on random 

effects iγ  and a given draw of model parameters θ .  The posterior predictive simulator then removes the 

latter conditionalities by estimating expected harvest for repeated draws of iγ  and θ .  The details of this 

approach are given in Moeltner et al. (2008, Appendix D).   

 In our application we compute separate PPD’s for expected harvest for two geographically 

disparate villages.  A PPD for combined harvest across villages can then be derived in straightforward 

fashion via the convolusion of the village-specific predictive distributions.  Denoting harvest levels and 

predictive densities for the two areas as 1y  and 2y , and  1 .p  and  2 .p , respectively, the PPD for 

combined expected harvest can be formally expressed as 

  
  

 
    

1 ,1 ,1

1 2 ,1 ,1 ,2 ,2

1 1 ,1 ,1 2 1 ,1 ,1 1 ,1 ,1

| ,

| , , ,

| , | , | ,
E y

p E y y

p E y p S E y dE y

 


f f

f f f f

f f f f f f

x h

x h x h

x h x h x h  (11) 

where , jfx and , 1,2j j f,h are, respectively, the predictive settings for demographic characteristics and 

institutional treatments at either location, and  1 2 ,1 ,1 ,2 ,2| , , ,S E y y  f f f fx h x h .  In practice draws from 
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the convoluted PPD can be obtained by adding draws from   1 1 ,1 ,1| ,p E y f fx h to draws from 

  2 2 ,2 ,2| ,p E y f fx h  via a “complete combinatorial” or via random sampling, as discussed e.g. in Poe et 

al. (2005).  It should be noted that this combination of location-specific PPD’s provides considerable 

flexibility in exploring the total effect on resource extraction of different mixes of policy tools at different 

locations.  We will illustrate this strategy in our empirical section. 

 

IV) Empirical Application 

Data 

To illustrate our estimation framework we use data from CPR field experiments conducted in 

2004 in several artisanal fishing communities of Colombia.  These experiments are described in detail in 

Velez et al. (Forthcoming(a)) and Velez et al. ( Forthcoming(b)).  For this application we focus on two of 

these communities, Ensenada de Tumaco on the Pacific coast (abbreviated as PAC in the following), and 

La Dorada in the Magdalena River’s watershed in the country’s interior (henceforth abbreviated as 

MAG).  We chose these two areas because of their different histories with respect to the institutional 

regulation of local fisheries.  Specifically, the shrimp fishery of Ensenada de Tumaco has a long-standing 

tradition of government regulations as well as informal regulations.  In contrast, government regulation is 

relatively weak in the Magdalena watershed, so local fishermen have largely relied on informal 

associations to manage their fresh water fishery.  These pronounced differences in institutional experience 

lead to interesting differences in experimental outcomes, as we will discuss below.  Some basic sample 

statistics for these two communities are given in Table 1. 

In each area subjects played several rounds of a CPR game in groups of five players.  In each 

round the participants had to decide to harvest between 1 and 9 integer units of the resource.  While the 

resource was loosely described as a “fishery” the units of extraction were not explicitly defined.  Instead 

all participants received an identical payoff table in which each cell constitutes the intersection between 
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harvest level chosen by the individual and the combined harvest level of all other group members.  The 

payoff table and its underlying profit function are given in Velez et al. (Forthcoming(a, b)) . 

 The game was administered under different institutional “treatments”.  For this application we 

focus on three of these treatments: “Treatment 1” (T1), a “Limited Access” version of the game without 

government intervention or communication (although with an upper bound of nine units of harvest), 

“Treatment 2” (T2), a harvest quota of 2 units, with a 10% audit probability and a low penalty, and 

“Treatment 3” (T3), the opportunity to openly communicate with the other group members prior to each 

round of decision-making.3  Further details on the implementation of the experiment are given in Velez et 

al. (Forthcoming (a,b)).  All 20 individuals (four groups) in each of the two communities included in our 

sample played ten rounds of the Limited Access game. For the second set of ten rounds, ten individuals 

(two groups) in each village played ten rounds under T2, with the other half of participants playing an 

equal number of rounds under T3.  Thus, our total sample includes 800 observations from 40 individuals 

on harvest decisions, 400 for T1 and 200 for each of T2 and T3.   

 

Model specification 

As mentioned above we estimate and compare two models with different conditional mean 

functions for each fishing community.  For both models the vector of individual characteristics ix  

includes “gender” (1 = female) and “years of education”4.  Model 1 (M1) has no constant term but 

includes 0/1 indicators for each of the three treatments.  It also assigns random coefficients to each 

treatment, and thus allows for institution-specific unobserved heterogeneity in observed harvest decisions.  

The conditional mean function for this model is thus given as 

1 1 2 2 3 3

1 1 11

2 2 22

3 3 33

log with

0 0

~ , 0 0

0 0

ip i i i

i

i

i

T T T

n

   

  
  
  

   

      
      
      
            

ix β

  ( 12) 

This implies that the variance of the logged mean function varies with treatments, i.e.  
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 log | , 1 3ip j jjV T j      ( 13) 

Accordingly, the variance for the truncated, un-logged expectation will also be treatment-specific, as will 

be evident in our posterior predictive distributions below. 

Model 2 (M2) is similar to the basic random effects specification that has been frequently used in 

other applications of multi-period games to capture unobserved heterogeneity in individual decisions (e.g. 

Carpenter, 2004, Moffat, 2005,  Velez et al., Forthcoming (a), Velez et al., Forthcoming (b)).  It includes 

a random constant term and fixed effects for treatments two and three. Treatment one becomes the 

underlying baseline category.  Formally: 

 
2 2 3 3

2

log with

~ 0,

ip i

i

T T

n 

   

 

   ix β
  ( 14) 

The important difference to M1 is that in this case unobserved heterogeneity is not systematically linked to 

treatments (or any other explanatory variable).  The two models are not nested since the derivation of M2 

from M1 requires the simultaneous restriction of 11 22 33 0      and the addition of the random 

constant term with variance 2 .  Note that this variance is based on all 20 observations associated with 

individual i, while the treatment-specific variances in M1 are each based on the ten observations 

associated with a given treatment.  Model 2 also implies that the variance of the logged mean function is 

equal under all treatments, i.e. 

  2log | , 1 3 ,ip jV T j      ( 15) 

which translates into an equal variance for the truncated un-logged expectation over treatments. 

 

Prior refinement 

We first estimate both models using the full sample and the following vague but proper priors: 

0 00, 100, 0, =100, 1/ 2     β β γ γμ V μ V .  Both models are estimated using 3000 burn-in draws 

and 120000 retained draws in the Gibbs Sampler.  The decision on the appropriate amount of burn-ins 
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was guided by Geweke, 1992)’s convergence diagnostic (CD).  We label this approach the “Full Sample” 

strategy.   

Our Bayesian framework offers an interesting alternative option in utilizing our data.  

Specifically, we can use some of our data to generate refined priors which can then be combined with the 

remaining data for the main analysis, along the lines described in Moeltner et al. (2007).  In our 

application, for example, we split the sample into the first five rounds for a given individual and 

treatment, and the second set of five rounds.  We use the first five rounds in conjunction with the diffuse 

priors given above to generate posterior distributions for all parameters.  We then employ the moments of 

these empirical distributions to replace the initial set of vague prior moments.  We then combine these 

refined priors with the remaining data to generate the final set of posterior densities.  The first step yields 

variance settings for βV and γV  in the 0.2 to 0.8 range, and settings for the inverse-gamma shape and 

scale parameters  between 1.5 and 2, and 0.1 to 0.4, respectively.  We deem this approach the “Split-

Sample” strategy.   

This Split-Sample strategy might be attractive in settings where the researcher wants to assign 

somewhat lower weight to the first few rounds of a game, (for example due to hypothesized presence of 

pronounced learning effects or other undesirable noise), but is reluctant to discard early-round results 

outright.  For our data, learning or other temporal effects have been found to be of secondary importance 

in previous analyses (Moeltner et al., 2008, Velez et al., Forthcoming (a), Velez et al., Forthcoming(b)).  

However, the Split-Sample approach can still provide overall efficiency gains over the Full Sample 

strategy if the gain in prior precision outbalances the loss in actual data in the second stage.  This is 

clearly apparent in our estimation results, as documented below.  

 

Estimation results 

Table 2 captures the components of the log-mLH expression in (9) for both models and regions. 

The last column provides the logged Bayes Factor, which refers to the difference of the log mLH of the 
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more likely model to the log mLH of the other specification.  The upper block of the table depicts results 

for the Full Sample approach, while the lower block captures results for the Split-Sample strategy.  As is 

evident from the Table, the unconstrained model (M1) receives substantially higher relative posterior 

probability than the restricted version (M2) in all cases.  Using the interpretation thresholds for BFs 

suggested in Kass and Raftery (1995) there is “decisive” (logBF>11.5) evidence that M1 is more likely to 

have generated the observed data than the random constant-only model (M2 ) in all cases.  As can be seen 

from inspection of the individual components that feed into the log mLH value (columns three to five)  the 

observed differences in mLH are largely driven by pronounced differences in sample likelihood values.  

We thus conclude that regardless of estimation approach (i.e. Full Sample vs. Split Sample) the likelihood 

function for the unconstrained model with treatment-specific heterogeneity fits the data by orders of 

magnitude better than the likelihood function for the random-constant model.  However, to further 

highlight the implications of ignoring institution-specific heterogeneity we will continue to report results 

for both models throughout the remainder of this section. 

Table 3 shows the posterior mean and standard deviation for all parameters included in both 

models.   The results are again reported by region (PAC = first two columns, MAG = last two columns) 

and estimation strategy (left table = Full Sample, right table = Split Sample).  The first block of rows 

shows results for the fixed effects, i.e. the elements of β for M1 and β and γ  for M2, the second block 

corresponds to the means of random effects, i.e. the elements of γ for M1 and the constant term for M2, 

and the third block gives results for the random effect variances, i.e. the diagonal elements of Σ for M1 

and the variance of the random constant, 2
  , for M2.   

For both models the estimated posterior means for the fixed effects “female” and “education” can 

be interpreted as the expected marginal effects of these regressors on the logged (un-truncated) expected 

extraction.  The posterior means for treatment effects can be loosely interpreted as the log of (un-

truncated) expected harvest for a male participant with no schooling.  They are captured in the “random 

effect means”- block of the table for M1.  This block also contains the mean of the random constant for 



  
  

14

M2, which corresponds to the posterior mean effect of T1, the baseline category in that model.  In contrast, 

the posterior means for the effects of T2 and T3 are shown in the “fixed effects” block for the restricted 

model.  Since M2 includes a constant term, these posterior means are to be interpreted as the differential 

effect for each treatment compared to the Limited Access scenario.  For all parameters the posterior 

standard deviations, provided in parentheses beneath each posterior mean, indicate the level of precision 

with which these effects are estimated.   

There are three important results that flow from Table 3: (i) both models agree on the ranking of 

treatment effects within each region, (ii) the random effect variances for all three treatments in Model 1 

have high posterior precision, and their posterior means clearly differ across treatments, and (iii) the Split 

Sample models exhibit higher posterior efficiency for most parameters. 

With respect to finding (i) we note that the posterior means of expected harvest levels are highest 

for the Limited Access scenario (T1) for all regions and models.  For PAC the institutional treatment T2 

has a decidedly stronger effect on harvest reduction than communication.  This picture is reversed for 

MAG, where T3 induces the lowest mean extraction levels followed by the quota-plus- penalty regulatory 

scenario.  As discussed in more detail in Moeltner et al. (2008) these results are intuitively sound 

considering the historical institutions for harvest regulation in each community.  The new insight in this 

study is that the unrestricted and restricted models portray the same ranking across treatments.  Thus, if 

such a ranking was our sole research objective, the proper modeling of treatment-specific heterogeneity 

would be of secondary importance for our application. 

However, important additional insights about the effects of each institutional design can be 

gained from the unrestricted model.  As summarized in finding (ii) above and depicted in the bottom 

block of the table for M1, the three treatments produce clearly distinct posterior means for random effect 

variances.  First, our results clearly indicate that allowing for communication (T3) reduces random effect 

variances compared to external regulation (T2).  In other words, communication appears to be better suited 

to reduce heterogeneous noise in decision making and foster the coordination of individual strategies than 

the weakly enforced quota regime in T2.  This result holds for both regions and estimation strategies.  



  
  

15

Second, the Limited Access treatment produces the lowest level of heterogeneous noise for both regions 

under the Full Sample approach.  However, as discussed in Moeltner et al. (2008), this result may be an 

artifact related to the experimental design, which produces twice as many observations for decisions 

under T1 than for outcomes under T2 and T3.  This allows for the diffuse priors used in the Full Sample 

model to have a relatively stronger impact on the posterior results for the variances associated with the 

latter two treatments.  Not surprisingly, this sample size effect is diminished under the Split Sample 

approach, which feeds substantially tighter priors for random effect variances into the posterior simulator.  

As is evident from the first column of the Split-Sample table, this actually lowers heterogeneity noise 

under T3 below the T1-level.  Since many SD experiments produce unbalanced sets of observations for 

different policy treatments, the Split-Sample’s ability to diminish the asymmetric influence of vague 

priors on posterior results may be another attractive reason to employ this framework. 

Building on finding (iii) above we also note that the Split Sample approach generates very similar 

posterior means compared to the Full Sample results, but exhibits lower posterior standard deviations for 

most parameters, regardless of model or region.  Thus, the tradeoff between reduced sample size and 

increased prior precision implicit in the Split Sample framework resulted in an overall efficiency gain for 

the final set of results for our application.  Naturally, it is possible that further efficiency gains could be 

achieved by changing our split-up over rounds form 5/5 to, say, 4/6, 6/4, or other proportions.  It would 

be interesting to explore this question of “optimal sample split” in future research . 

 Next, we compare Models 1 and 2 based on their posterior predictive distributions (PPDs) for 

expected harvest, as described in the previous Section.  We derive these PPDs for each regulatory 

treatment by setting treatment indicators to the corresponding combination of zeros and ones.  We also set 

“education” to the sample mean for a given community.  To capture gender effects we create weighted 

averages of separate PPDs for each value of the “gender” indicator, using the observed proportion of 

females as weights.   Given the settings for our demographic regressors fx  we would expect our posterior 

outcomes of interest to lie in the vicinity of sample results. 5  
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Table 4 shows the posterior means and standard deviations for predicted expected harvest for all 

models and regions.  As in Table 2 the first half of the table reports results corresponding to the Full 

Sample approach, while the bottom half shows results for the Split-Sample strategy.  The first row of each 

sub-table depicts corresponding sample statistics, evaluated over all ten periods for the Full Sample, and 

over the last five periods of a given treatment for the Split Sample.  In general, the restricted and 

unrestricted models produce posterior means of comparable magnitude to one another and to the sample 

statistics.  As expected (and discussed in more detail in Moeltner et al. , 2008), T2 induces the lowest 

expected harvest for the Pacific community, while T3 yields the lowest extraction level for Magdalena.   

From this study’s perspective the key result captured in Table 4 is the pronounced difference in 

posterior standard deviations between the constrained and unconstrained models for treatments two and 

three.  Specifically, the restricted model M2 produces substantially smaller standard deviations for these 

treatments than the unrestricted specification.  While this might be naïvely interpreted as “superior 

efficiency ”, it is a direct result of ignoring individual heterogeneity in subjects’ responses to these 

institutional treatments.  We will discuss this effect further in our graphical analysis below.  True 

efficiency gains, however, are again delivered by the Split-Sample approach compared to the Full Sample 

strategy, as the former generates slightly lower posterior standard deviations than the latter for most of the 

PPD’s captured in the table.  This gain in predictive efficiency is, of course, directly related to the Split 

Sample’s higher precision in the estimation of the underlying parameters as discussed above. 

Figure 1 depicts the pdf and cdf  for all simulated PPDs of expected harvest.  All sub-figures are 

based on the Split-Sample results. 6  While the distribution under T1 is similar for models M1 and M2, it is 

apparent from the Figure that Model 2 produces misleadingly tight and symmetric distributions for T2 in 

the Pacific application, and for T2 and T3 for the Magdalena sample.  Model 1 reveals that the true PPDs 

under these treatments are skewed to the right, with considerable probability mass over the lowest harvest 

tier.  Furthermore, it is evident only from M1 that the quota treatment T2 induces a bimodal density for 

expected harvest for the Magdalena region, with highest probability mass allocated to the lowest and 

highest harvest levels.  This has significant policy relevance because it indicates that a quota plus 
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punishment treatment in that region might induce countervailing incentives for some fishermen and 

pronounced disagreement amongst local resource users.  This bimodality is completely absent for the 

restricted model.   

 Figure 2 shows the combined expected harvest under the four possible mixes of treatments two 

and three across regions.  As discussed in the previous section these combined PPDs are generated by 

convoluting the corresponding region-specific predictive densities.7  As for Figure 1, all sub-figures are 

based on Split-Sample estimation.  For comparison purpose, each sub-figure also shows the PPD for 

expected extraction under the Open-Access scenario (solid line).  The policy relevance of these figures 

lies in their ability to depict optimal harvest-reducing strategies under a single umbrella policy (same 

treatment at both regions), and under region-specific policies.  This is important as in a given real-world 

context legislative or budgetary constraints may impose one or the other approach.  The figure clearly 

indicates that the ideal scenario under unrestricted policy choice would be to implement T2 for PAC and 

T3 for MAG (lower right sub-figure).  This is not surprising given our previously discussed results on 

parameter estimates and region-specific PPDs.   

The figure also offers a clear prescription if a single policy instrument has to be chosen in both 

regions.  Comparing the top two sub-figures, it is clear that both T2 and T3 induce the same upper bound 

of approximately 14 units, but T2 allocates substantially more mass to the lowest extraction tier.  This 

implies that the relatively stronger effect of T2 to reduce harvest in the PAC region outweighs the 

comparative advantage of T3 in MAG when the objective is to reduce combined extraction.   

 

IV) Conclusion 

In this chapter we illustrate the importance of allowing for treatment-specific subject 

heterogeneity in the analysis of data from Social Dilemma Games.  Using a Bayesian estimation 

framework and data from common-pool resource field experiments in rural Colombia, we find that a 

naïve model that captures unobserved heterogeneity only in generic terms produces severely misleading 

results with respect to the variability and distribution of predicted outcomes under different treatments.  
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 We also demonstrate how early-round data can be used to derive refined priors that, when 

combined with the remaining data, can enhance the posterior efficiency of final results. We further show 

how experiment-specific predictive results can be combined via the method of convolution to generate 

densities of broader predictive constructs.  This can be an important tool to inform region-wide resource 

policy under different administrative constraints of treatment allocation over sub-regions.   

In addition to highlighting methodological issues and tools related to treatment-specific subject 

heterogeneity, this paper also advances the understanding of potential differences in effectiveness 

between externally-imposed regulations and informal rules. In particular, it lends support to the intuitive 

notion that communication serves as an effective device for coordinating individual decisions, thereby 

reducing heterogeneous noise.  On the other hand, the bi-modal outcome of T2 in Magdalena (M1 in 

Figure 1) shows that although external regulations may reduce harvests on average, this may be the result 

of vastly different individual responses to that treatment. Although average responses to the two 

treatments may be similar, the paths through which this is accomplished can be fundamentally different. 

Model 1 draws this point out, whereas this conclusion would be missed with Model 2.   

Naturally, all of our results are based on quantity-neutral “extraction choices” from stylized 

games.  Since the preference structure underlying the pay-off table was exogenously imposed by the 

researcher, it is difficult to link the resulting frame-constrained choices to actual expected harvest levels 

in units of physical quantities.  To make meaningful predictions regarding actual resource use based on 

experimental results, the experimental design needs to reflect real-world preference structures and 

production processes.  We believe this would be a natural next step to better align field experiments with 

actual policy prescriptions.  It is our hope that with this chapter we have contributed to paving the path 

towards this important future extension of field experiments with focus on natural resource management. 
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Notes

 
1 The reader is referred to Koop (2004), Lancaster (2004) or Koop et al. (2007) for further details on the 

fundamental concepts and method in Bayesian estimation. 

2 For a comparative review of alternative approaches to approximate the marginal likelihood see Han and 

Carlin (2001). 

3 From a game-theoretic perspective the expected penalties under regulatory treatment T2 are not high 

enough to induce compliance with the harvest quota.  However, such weak enforcement strategies are 

characteristic of regulatory control of natural resources in the developing world. 

4 We also included subjects’ age in preliminary specification but found no measurable effects for this 

regressor. 

5 Our predictive draws are generated as follows:  We first thin the original sequence of parameter draws 

flowing from the Gibbs Sampler by a factor of ten to reduce simulation-induced autocorrelation.  For each 

of the resulting 1200 draws of parameters, we draw 100 values for random effects.  This yields a total of 

120,000 predictive draws for expected harvest. 

6 The Full Sample produces very similar graphs.  They are available from the authors upon request. 

7 To conserve on computational memory, we generate these convolutions by recouping and convoluting 

the 1200 predictions for expected harvest corresponding to the thinned parameter sequence from the 

original Gibbs Sampler plus a single draw of random effects.   
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Table 1:  Sample Statistics 

Pacific Magdalena 
  mean / percent std   mean std 

age 43.2 11.6 42.7 15.4 

years of formal 
education  4.1 2.3 4.3 2.9 

female 10.0% - 20.0% 

lived in community ten 
years or longer 95.0% - 93.0% - 

fishing is the main 
household activity 94.0% - 87.0% - 

extraction , periods 1-5 5.1 2.4 5.0 2.5 
extraction, periods 6-10 4.9 2.6 4.9 2.7 
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Table 2:  Model Comparison  

Full Sample 
  # param. logLH log(prior) log(post.) log(mLH) logBF* 

Pacific 
Model 

M1 8.00 -1471.19 -20.57 8.50 -1500.27 173.12 
M2 6.00 -1650.51 -18.43 4.45 -1673.39 - 

Magdalena 
Model 

M1 8.00 -1509.88 -20.34 6.96 -1537.19 226.17 
M2 6.00 -1741.25 -17.43 4.67 -1763.36 - 

  

Split Sample 
  # param. logLH log(prior) log(post.) log(mLH) logBF* 

Pacific 
Model 

M1 8.00 -682.556 6.590 10.657 -686.623 152.05 
M2 6.00 -838.526 5.677 5.822 -838.672 - 

Magdalena 
Model 

M1 8.00 -673.805 3.343 7.854 -678.316 195.85 
M2 6.00 -874.083 5.261 5.347 -874.169 - 

  
mLH = marginal likelihood / *BF = Bayes Factor. Based on the difference of the log-marginal likelihood  
of the more likely model to the log-marginal likelihood of the other model. 
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Table 3: Estimation Results for Most Likely Sub-models, all Regions 

  

Full Sample Split Sample 
Pacific Magdalena Pacific Magdalena 

M1 M2 M1 M2 M1 M2 M1 M2 

mean mean mean mean mean mean mean mean 
  (std)   (std)   (std)  (std) (std)  (std)  (std)   (std) 

Fixed Effects 
female 0.118 0.048 0.226 0.237 0.078 0.048 0.244 0.250 

(0.162) (0.184) (0.144) (0.169) (0.125) (0.134) (0.115) (0.125) 
education -0.230 -0.234 -0.027 0.082 -0.279 -0.272 0.005 0.049 

(0.221) (0.275) (0.173) (0.200) (0.148) (0.166) (0.123) (0.136) 
T2 - -0.904 - -0.490 - -0.892 - -0.481 

- (0.057) - (0.054) - (0.057) - (0.054) 
T3 - -0.242 - -0.537 - -0.260 - -0.563 

- (0.049) - (0.055) - (0.050) - (0.055) 

RE Means 
const - 2.020 - 1.761 - 2.009 - 1.813 

- (0.131) - (0.115) - (0.075) - (0.078) 
T1 2.017 - 1.802 - 2.016 - 1.802 - 

(0.113) - (0.103) - (0.077) - (0.074) - 
T2 1.010 - 1.372 - 1.037 - 1.344 - 

(0.201) - (0.255) - (0.140) - (0.170) - 
T3 1.697 - 1.143 - 1.664 - 1.126 - 

(0.135) - (0.169) - (0.089) - (0.120) - 

RE Variances 
const - 0.105 - 0.159 - 0.079 - 0.136 

- (0.029) - (0.042) - (0.024) - (0.039) 
T1 0.116 - 0.118 - 0.105 - 0.129 - 

(0.035) - (0.034) - (0.041) - (0.047) - 
T2 0.587 - 1.072 - 0.408 - 1.023 - 

(0.241) - (0.436) - (0.180) - (0.432) - 
T3 0.146 - 0.310 - 0.068 - 0.302 - 

(0.057) - (0.125) - (0.033) - (0.134) - 
                           

RE = random effects     
mean = posterior mean  /  (std) = posterior standard deviation 
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Table 4: Observed and Predicted Extraction Levels 

Pacific Magdalena 
T1 T2 T3 T1 T2 T3 

                  

Full Sample 
Sample 

sample mean 5.920 3.260 4.875 5.620 4.355 3.575

Model Predictions 
M1 

post. mean 6.008 3.295 4.909 5.667 4.530 3.696
(post. std) (1.143) (1.744) (1.310) (1.180) (2.379) (1.512)

M2 
post. mean 5.986 3.102 5.153 5.685 4.088 3.935
(post. std) (1.097) (0.824) (1.156) (1.311) (1.239) (1.214)

Split Sample 
Sample (last 5 periods) 

sample mean 5.770 3.350 4.520 5.553 4.670 3.680

Model Predictions 
M1 

post. mean 5.935 3.161 4.689 5.710 4.475 3.682
(post. std) (1.101) (1.473) (0.952) (1.213) (2.313) (1.470)

M2 
post. mean 5.929 3.033 4.990 5.825 4.219 3.958
(post. std) (0.957) (0.686) (1.001) (1.226) (1.191) (1.149)

                  
post. mean = posterior mean, (post.std) = posterior standard deviation
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Figure1: Predictive pdf and cdf for Expected Harvest 
Pacific 
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Figure 2: Predictive pdf for Combined Expected Harvest Under Different Treatment Combinations  
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